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A Multiscale Model of Adaptation and Spatial Vision
for Realistic Image Display

Sumanta N. Pattanaik James A. Ferwerda

Mark D. Fairchild®* Donald P. Greenberg

Program of Computer Graphics | Cornell University

Abstract

In this paper we develop a computational model of adaptation and
spatial vision for realistic tone reproduction. The model is based
on a multiscale representation of pattern, luminance, and color pro-
cessing in the human visual system. We incorporate the model into
a tone reproduction operator that maps the vast ranges of radiances
found in real and synthetic scenes into the small fixed ranges avail-
able on conventional display devices such as CRT’s and printers.
The model allows the operator to address the two major problems in
realistic tone reproduction: wide absolute range and high dynamic
range scenes can be displayed; and the displayed images match
our perceptions of the scenes at both threshold and suprathresh-
old levels to the degree possible given a particular display device.
Although 1n this paper we apply our visual model to the tone re-
production problem, the model is general and can be usefully ap-
plied to image quality metrics, image compression methods, and
perceptually-based image synthesis algorithms.

CR Categories: 1.3.0 [Computer Graphics]: General,;

Keywords: realistic imaging, visual perception, tone reproduc-
tion, adaptation, spatial vision

electronic and print-based media which have only moderate output
levels and typical dynamic ranges of less than 100 to 1.

Recently graphics researchers have started to address this issue
by developing fone reproduction operators that map scene radi-
ances to display outputs with the goal of producing a visual match
between the scene and the display. There are two major problems
to be solved in realistic tone reproduction:

e to find an operator that maps the vast ranges of radiances
found in scenes into the range that can be produced by a given
display device.

e to be certain that this operator produces images that match our
perceptions of the scenes.

The critical element that links these two problems is the visual
model used in the tone reproduction operator. Visual models are
used to relate the perceptual responses of a scene observer to the
responses of the display observer in order to specify a mapping that
produces a visual match between the scene and the display. A cen-
tral 1ssue 1s that different tone reproduction operators have made use
of different visual models to determine what constitutes a match.

Tumblin and Rushmeier’s [1993] operator 1s based on Stevens’
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Figure 1: Threshold and suprathreshold models of vision: a) Threshold vs. intensity (TVI) functions for the rod and conc systems. The curves plot the
smallest threshold increment A L necessary (o see a spotl against a unilorm background with luminance L. b) Stevens’ model ol suprathreshold brightness and
apparcnt contrast. The curves plot the changes in brightness and apparcent contrast of gray targets and a white surround as the Ievel of illumination rises (1 Bril
= apparent brightness ol a target with a luminance ol | uLambert). Adapted [rom [Ferwerda96, Stevens61].
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for a monochromatic luminance grating (o; green; 526nm) and a isolu-
minant chromatic grating (O; red/green; 602, 526nm). Adapled [rom Figure 3: Contrast sensitivity functions for sinusoidal gratings illuminated
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Adapted [rom [vanNes67].
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Figure 4: Multiscale bandpass mechanisms underlying the contrast sensi-
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100

4
> 0=5.2 min, 7 msec
— ’ O
n 34 ®= 55 min, 1 sec o
< C
L
= o O
= 0O 0O
- 2—1 O Q O
o ]
5 .
) 28
R -
Ll 2
s
i ']
= a
O 0 - & s o °
O
e
=5  E e T 1 r
— -~ 3 -2 -1 0 1

LOG ADAPTING INTENSITY
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Figure 6: Suprathreshold contrast constancy and non-linear contrast transducers in human vision. Adapted from [Georgeson75, Watson97b].
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Figure 7: Flow chart of the computational model of adaptation and spatial
vision for realistic tone reproduction.
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Figure 7: Flow chart of the computational model of adaptation and spatial
vision for realistic tone reproduction.
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Figure 9: Application of the model to a wide range of illumination levels.
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Figure 10: Illustration of chromatic adaptation.
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Figure 11: Tone mapping of high-dynamic range images. The images on the top are linear mappings of the original high-dynamic range images. The images
on the bottom are the mapping obtained by application of the visual model.
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Journal of Electronic Imaging 13(1), 126—138 (January 2004).

iCAM framework for image appearance,
differences, and quality

Mark D. Fairchild
Garrett M. Johnson
Rochester Institute of Technology
Chester F Carlson Center for Imaging Science
Munsell Color Science Laboratory
54 Lomb Memorial Drive
Rochester, New York 14623-5604
E-mail: mdf@cis.rit.edu

Abstract. Traditional color appearance modeling has recently ma-
tured to the point that available, internationally recommended mod-
els such as CIECAMO2 are capable of making a wide range of pre-
dictions, to within the observer variability in color matching and color
scaling of stimuli, in somewhat simplified viewing conditions. It is
proposed that the next significant advances in the field of color ap-
pearance modeling and image quality metrics will not come from
evolutionary revisions of colorimetric color appearance models
alone. Instead, a more revolutionary approach will be required to
make appearance and difference predictions for more complex
stimuli in a wider array of viewing conditions. Such an approach can

the inks as well as measures of the dot area coverage for
halftone systems. In electronic systems like television, sys-
tem measurements such as signal voltages were used to
colorimetrically quantify the imaging system.! It should be
noted that vision-based measurements of imaging systems
for image quality do have a long history, as illustrated by
the example of Schade’s pioneering work.? As imaging sys-
tems evolved in complexity and openness, the need for
device-independent image measures became clear.
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Stimulus Lightness Map




Stimulus Chroma Map




Hue Map

Stimulus



Two Input Images are Given, an Original and
Reproduction

\

The Input Images are Transformed into an Opponent
Color Space i

.

The opponent channels are filtered using Contrast
Sensitivity Functions, which are adapted based on the
spatial information in the image. The filtering

decreases information that is not visible, and
iIncreases information where it is most visible.

Models of local attention and local contrast are
applied to the filtered images o

The filtered images are then converted into CIELAB
coordinates, and a Pixel-by-Pixel color difference is
calculated.
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The HDR Photographic Survey

Mark D. Fairchild, Rochester Institute of Technology, Munsell Color Science Laboratory, Rochester, NY/USA

Abstract

High-dynamic-range (HDR) imaging is one of the remaining
frontiers for significant advancement in consumer and professional
color imaging systems. Systems for the capture, processing, and
display of HDR images are gradually moving from the rvesearch
labs and specialized applications to more mainstream usage and
impact on consumer photography. The HDR Photographic Survey
is a research project and public-domain database of images and
scene data aimed at improving these systems by providing images
and data that can be freely used by researchers around the world.
This allows for more efficient testing and improvement of HDR

algorithms and displays through enhanced inter-comparisons of

results from various researchers and the availability of images with
colorvimetric and color appearance reference data from the
original scenes. This paper describes the process of collecting the
images and scene data, the system characterization, and the
creation and use of the database.

Introduction
In the 1860°s and 1870’s outstanding and dedicated photographers

such as Timothy O’Sullivan, William Henry Jackson, John K.
Hillers, and others took part in expeditions to the American west

as the Zone System, involved pre-visualization of the desired print
while at the original scene, careful exposure of the photographic
negative as a relatively-HDR record of the scene, and then careful
printing with dodging, burning, and retouching to create low-
dynamic-range prints that matched the actual or imagined
appearance of the original scene. So it could be said that he
recorded the appearance of the scene with local adaptation and
then rendered that appearance in the darkroom. This 1s exactly
what current researchers try to automate in some way with visual
models of spatial adaptation aimed at developing HDR rendering
algorithms.[5] In fact, Adams’ techniques have rather directly
inspired one very successful HDR rendering algorithm.[6]

Figure 1. Eighteen individual exposures, each separated by one stop, used to
construct the Luxo Double Checker HDR characterization image.
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HDR Photographic Survey Major Trip Routes

wsse Ottawa, Algonquin, Niagara Falls - May, 200€
s Ben&Jerry's, Acadia, Hancock - August, 2006
. Canton, Adirondacks - October, 2006

ww~Western Loop (Counterclockwise) - April/May, 2007



Procedures

Calibrated/Characterized Nikon D&2x

O Exposures, 1-Stop Increments (typical)
Assembly into Linear HDR Image (CS2)
OpenEXR, 32-Bit Floating Point

Scene Colorimetry, Appearance, Other Data,
Mirror Ball Image

All Details Online
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Camera Characterization

Nikon DRx

Linear HDR Image Data

12-Bit RAW --> 16-Bit TIFF --> 32-Bit OpenEXR
3X3 Matrix from Linear RGB to CIE XYZ
Verified in a Second Research Project

Mean AEsp = 2.5 (Max = 5.95)
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Paul Bunyan Data.xls

e C D £ F G H | J Y
Scene Name:|Paul Bunyan | Dofe:l 4/19/07 Time: 5:11PMI
Location:|Bemidji, MN Loti’rude:|47°28.239N| Lingi'fude:|94°52.74 Direction: 149°
Weather:|65°+ Sunny, 28.59" Elevation: 1352'
| :
Camera: D2x F/#: 16 By S| IR
Length: Exposures:
Color'imefer:l CS100| Meas. Angle: 3®
| Scene Elements:
Texture
NAME Y x J Cc h
I I l / I | | I 2 I V/N)
Babe Under Eye 4780 0.221 0.244 8 8 B 200 Y
Babe Leg in Shadow 522 0.237 0.249 5 6 B 100 Y
Paul Right Thigh 875 0.208 0.228 4 7 B10G 80 Y
Paul Red Center 1760 0.533 0.324 7.5 8 YO0R 180 Y
Sky Middle 2560 0.243 0.252 8 6 B 100 N
Trees Middle 936 0.379 0.408 5 5 G10Y 120 Y
Mirror Ball Shot:| N
Summary Stats : Luminance
(Post): Min. Max. Dyn. Range Mean Multiolier
| 0.01] 2,690 1.2k:1] 333] 300
Added Notes:
Got my BSU shirt firstlll
Sun Fading Fast ...
Waited to finish measurements in the sun.
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Website

<markfairchild.org/HDR.html>
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1ICAMO6: A refined image appearance model for HDR 1mage rendering

Jiangtao Kuang *, Garrett M. Johnson, Mark D. Fairchild
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Abstract

A new image appearance model, designated ICAMO06, was developed for High-Dynamic-Range (HDR) image rendering. The model,
based on the ICAM framework, incorporates the spatial processing models in the human visual system for contrast enhancement, pho-
toreceptor light adaptation functions that enhance local details in highlights and shadows, and functions that predict a wide range of
color appearance phenomena. Evaluation of the model proved iICAMO6 to have consistently good HDR rendering performance in both
preference and accuracy making iICAMO6 a good candidate for a general-purpose tone-mapping operator with further potential appli-

cations to a wide-range of image appearance research and practice.
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Preference Scores

a1

-2 =+ =+ =+ =+ =+ =+ =+
H ICAM P PG PL B ICAMOG

Fig. 7. Overall preference scores of tone-mapping operators over 12 HDR
images (The operators are labeled as Histogram Adjustment (H), 1ICAM,
Photographic Reproduction (P), Photoshop Exposure and Gamma (PG),

Photoshop Local Adaptation (PL), Bilateral Filter (B) and 1CAMO06. The
same labels are used m this paper.).
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Fig. 6. Thumbnails of experimental images (scenes).



Accuracy Scores
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H P ICAM B PG PL ICAMOG6
Fig. 10. Overall accuracy scores ol tone-mapping operators for 4 real-
world scenes.



Preference Scores

Preference Scores

Canadian Canadian Kitchen In Double Mark Otter PecklLake breakfast Dam dask sunrise window
Lights Falls Checkers Point

Clw B icaM P B PG HPrL 0B B iCAMOB

Fig. 8. Preference scores for 12 test images by image.

W ICAM P PG PL B ICAMO6
O Canadian Lights [l Canadian Falls O Kitchen In B Double Checkers [EMark B Otter Paint
B Pocklaka B broakfast B Dam B desk B sunnse B window

Fig. 9. Preference scores for 12 test images by algorithm.
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Abstract

Small, supra-threshold color differences are typically described with Euclidean
distance metrics, or dimension-weighted Euclidean metrics, in color appear-
ance spaces such as CIELAB. This research examines the perception and
modeling of very large color differences in the order of 10 CIELAB units or
larger, with an aim of describing the salience of color differences between dis-
tinct objects in real-world scenes and images. A psychophysical experiment
was completed to compare directly large color-difference pairs designed to
probe various Euclidean and non-Euclidean distance metrics. The results indi-
cate that very large color differences are best described by HyAB, a combina-
tion of a Euclidean metric in hue and chroma with a city-block metric to
incorporate lightness differences.
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TABLE 1 One stimulus with two color pairs in first category

Pair number L a* b* CIELAB CIEDE2000 Color presentation
Stimulus A Patr1 60 —15 6.5 39.28 28.35
60 113 —22.5

Pair 2 60 —~135 0.5 40.30 29.74
71 115 =7




TABLE 3 One stimulus with two color pairs in first category

Pair number L* a*® b* CIELAB CIEDE2000 Color presentation
Stimulus B Pair 1 60 —2.25 10.5 31.70 28.97
60 21.5 —10.5

Pair 2 72 —2. 20 10.5 33.90 30.57
60 21.5 —10.5

TABLE 4 One stimulus with two color pairs in second category

Pair number L* a* b* CIELAB CIEDEZ2000 Color presentation
Stimulus A Pair 1 70 —-17.5 26.5 41.18 29.46
50 —-17.5 —-9.5

Pair 2 70 —~17.2 26.5 42.76 31.46
50 —6 =85
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FIGURE 4 Screenshot of observer interface
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Finally, the overall distance between the two points is the
sum of two distances. The color difference (CD) between
two points using “AL*+4FEuclidean(a*,b*)” is calculated

using Equation (3):

1/2

CD1 = [AL*| + [(a*, —a*;)* + (b*; —b*;)*] (3)

The “AL*+Euclidean(a*,b*)” 1s notated as the
“HyAB” color difference formula in the rest of this
article—"Hy"” to indicate that it is a hybrid model, a com-
bination of city block and Euclidean, and the last letters
to show that the Euclidean dimensions are a* and b*.
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ALIP: A Difference Evaluator for Alternating Images

PONTUS ANDERSSON, NVIDIA

JIM NILSSON, NVIDIA

TOMAS AKENINE-MOLLER, NVIDIA

MAGNUS OSKARSSON, Lund University

KALLE ASTROM, Lund University

MARK D. FAIRCHILD, Rochester Institute of Technology

Image quality measures are becoming increasingly important in the field of computer graphics. For example,
there 1s currently a major focus on generating photorealistic images in real time by combining path tracing
with denoising, for which such quality assessment is integral. We present 1LIP, which is a difference evaluator
with a particular focus on the differences between rendered images and corresponding ground truths. Our
algorithm produces a map that approximates the difference perceived by humans when alternating between
two 1mages. HLIP 1s a combination of modified existing building blocks, and the net result is surprisingly
powerful. We have compared our work against a wide range of existing image difference algorithms and
we have visually inspected over a thousand 1mage pairs that were either retrieved from image databases
or generated in-house. We also present results of a user study which indicate that our method performs
substantially better, on average, than the other algorithms. To facilitate the use of 1LIP, we provide source

code in C++, MATLAB, NumPy/SciPy, and PyTorch.
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Fig. 1. The ALIP pipeline.
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Fig. 2. Top: the original CSFs (Equation 2) are shown in red and our approximation, using a single Gaussian,
or two in the case of the blue-yellow channel, in black. Bottom: the red curves are inverse discrete Fourier
transformed versions of the CSFs in Equation 2, but they have negative lobes, which we wish to avoid. The
black curves are the Gaussians from the top row, analytically inverse Fourier-transformed to the spatial
domain. These do not include any negative lobes and are the ones used by ALIP.



Spatial Filtering

AEHYAB(Ra T) = ILE — Lj;‘ -+ \/(ai; — aik[‘)z T (b

Plus Hunt and remapping.

(8)



Fig. 3. Left: two colors with the same, high luminance, where the second color was generated using a rotation
of the chrominance of the first. Right: two colors with the same, low luminance, with the same chrominance
components as the colors in the first color pair. The difference between the colors is perceived as larger in the
left pair due to the Hunt effect.
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Fig. 4. lllustration of our error redistribution, compressing large color distances into a smaller range.



Fig. 5. From left to right: 1) the reference image, 2) the test image, including a small edge generated by a short
ramp on either side and some salt and pepper noise, 3) the edge difference (first argument in Equation 9), 4)
the point difference (second argument in Equation 9), and 5) the maximum of the edge and point difference
in each pixel. Note that all differences are scaled for visibility.

pixels. This is illustrated in Figure 5 where we see how the edge error is large along the edge, but
small on the pixels containing salt and pepper noise, while the opposite is true for the point error.
Based on this, we choose the feature difterence, AE¢, between pixels in the reference image, R, and
the test image, T, to be the maximum of the differences in edge and point feature values, i.e.,

qf
||

1
AE¢ = | — max (|| VRl = [[VTIl|, [IV*R]| = [V*T]l])] . 9)

V2




Fig. 6. From left to right: 1) reference image, 2) test image, including aliasing artifacts, 3) color error, AE,
produced by the pipeline in Section 4.1, and 4) color error enhanced based on feature differences (Equation 10).
The heatmap we use is shown to the right, where bright yellow corresponds to maximum error and dark to
minimum error. Note that this heatmap was selected since its luminance is a linear ramp from dark to bright.
The images are have been enlarged to more clearly show the differences.

AE = (AE.)!™2Ff (10)
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Fig. 7. Top row, from left to right: 1) a weighted ALIP histogram, generated using the third image on this
row, showing the weighted median, the mean, the 1st and 3rd weighted quartiles, and the minimum and the
maximum value. 2) same as to the left, except that the y-axis is in log space, resulting in the larger errors
(with low counts) becoming more pronounced, which may be beneficial in some cases. In the left diagram, it
can be seen that the area to the left of the weighted median is the same as the area to the right. 3) the path
traced test image with 32 samples per pixel (SPP). 4) the ALIP error map, which was computed against a path
traced reference image with 2°° SPP. Bottom row: same as the top row, except that the test image was path
traced using 1,024 SPP. Note that the image on the bottom row has more pixels with medium to high errors
and that this is clearly visible only in the log diagram.
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Fig. 8. Pooled ALIP values for the Bistro leaves images, partially shown in Figures 7 and 10. Note that the
third quartile has a local peak at 4,096 and 16,348 SPP. The reason for this is that the corresponding images
have an increased number of fireflies compared to the lower SPP images, which can be seen when zooming
in on the corresponding images in Figure 10.
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Fig. 9. A collection of example images and corresponding error maps. Each column contains one reference
image, one test image, the ALIP map, and the error map produced by one of the other metrics which ALIP
is compared against. Recall that ALIP has been developed for the flip test, so instead of zooming in on the
images in the paper, we recommend that the reader looks at the images in our supplemental material at a
distance such that p = 67 pixels per degree. Here, image pairs 1-5 are rendered, while image pairs 6-8 are
natural images. Image pair 6 is courtesy of NASA and image pair 7 of Lambert/Keystone/Getty Images.
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Fig. 10. Here, we show an example of the progression of a naive path tracer. In the leftmost column, we show
the same reference images in each row (generated with 2% samples per pixel), followed by test images, where
each test image has 4x more samples than the one above it. We then present the corresponding error maps,
for each test image and each metric, in the remaining columns. Note that there is a substantial amount of
firefly detection with ALIP in the images with 4,096 and 16,384 SPP (visible when zooming in).
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Fig. 11. A compressed photograph exemplifying ALIP’s tendency to overestimate the perceived error in the
presence of masking.
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Fig. 12. The image pairs used in our user study. The top row shows rendered images, while the bottom row
shows natural images with various distortions. All images, together with the error maps generated by the
different metrics used in the study, are included in our supplemental material. N4 is courtesy of NASA and
N5 is based on a photo by Lambert/Keystone/Getty Images.
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Fig. 13. Left: the results from our user study with per-image and per-metric averages. The rendered images
(Rx) and the natural images (Nx) are the ones shown in Figure 12. Right: averages and 95% confidence
intervals over all images (gray), only rendered images (orange), and only natural images (blue), respectively,
where the x-axis is the score, from 0 (minimum) to 3 (maximum), in the user study.
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Future: A New Colorimetry




Individual Cone Responsivities
vK20 Chromatic Adaptation Model

Color Appearance Scales & Differences
(Lightness, Saturation, Hue, Brightness, Colorfulness, Chroma)

Image Filtering/Differences Can Be Applied on Scales



Thank You / Gracias

mark.fairchild@rit.edu



