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What do we do?
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Build prototype displays

Collect visual data with
psychophysics/psychometrics

Create visual modelsUse in 
perception-optimized applications

Rendering

Encoding



Goal: To match colour and contrast 
appearance across viewing conditions
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Dark-display compensation

– Match the appearance of bright image on a dark display
 or the opposite

– Method:
 Model night vision, compensate for it

– Improves image quality on a dimmed display
 Lower power consumption, less eye fatigue

Compensated
for a dark display
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OmniCSF
Spatio-chromatic contrast sensitivity
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Colour discrimination
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[MacAdam (1942). Visual Sensitivities to 
Color Differences in Daylight. JOSA]

 Colour discrimination for 2 deg half-discs

 How can we model colour discrimination 
that can generalize to complex images? 

50 x colour 
matching

std of colour 
matches
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The fallacy of flat colour gamut 
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2D projection of 
a visible colour 

gamut

Visible vs. sRGB
colour gamut

 Colour gamut is a 3D solid 

– We need to consider all dimensions

– Luminance is often more important than 
chromaticity

 Visible colour gamut is larger than what is 
encoded in popular colour spaces

– sRGB, Lab, Luv, …



Modeling visual system
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Spatio-chromatic CSF

Rafał Mantiuk, University of Cambridge 13



Contrast and Sensitivity
 Contrast

 Contrast detection threshold (or detection threshold)

– A small contrast that is detectable by an average 
observer with 75% probability

 Sensitivity

– The inverse of the detection threshold

Rafał Mantiuk, University of Cambridge 14

௧



Datasets
 5 datasets measuring spatio-chromatic CSF

– natural viewing 
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CSF measurements on HDR display
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35,000 cd/m2 peak luminance 
0.01 cd/m2 black level
LCD resolution: 2048x1536 [160 ppd]
Display uniformity compensation
Colour calibrated using 

Stockman & Sharpe CMFs
10-12 bits per colour channel
spatio-temporal dithering + bit-stealing

[Wuerger et al. 2020, JoV]



CSF Model: Cone-contrast
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Input:
Background colour L0M0S0

Colour direction ΔLMS
Spatial frequency ρ [cycles per degree]
Luminance Y [cd/m2]
Stimulus size a [deg2]

Output:
Probability of detection Pdet

Probability of detecting a Gabor 
on background L0M0S0

and amplitude ΔLMS



CSF Model: Cone-contrast
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Cone contrast accounts for colour adaptation



CSF Model: Cone-contrast
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Colour opponent responses



CSF Model: Cone-contrast
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Per-mechanism non-linearities

Frequency: Log-parabolas 

Size: Rovamo’s model [1993]

Luminance: hyperbolic functions



CSF Model: Cone-contrast
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Probability summation

Across three colour 
mechanisms

Slope of the 
psychometric function



CSF Model: Cone-contrast

Rafał Mantiuk, University of Cambridge 22

Psychometric function



CSF Model: Postreceptoral contrast
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Contrast computed on the responses of the 
mechamisms



[Kim et al. 
2013]

Fitting the data
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[Wuerger et 
al. 2002]

[Mantiuk et 
al. 2011]



Fitting the data
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[Xu et al. 2020] [Wuerger et al. 2020]



Model predictions
 CSF as a function of background colour, luminance, colour 

direction, frequency and size
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Black-White Red-Green Violet-Yellow



New CSF for colour 
discrimination
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 Colour discrimination as a function of

– Background colour and luminance 
[LMS]

– Spatial frequency [cpd]

– Size [deg]



OmniCSF
 New practical colour CSF that models

– All spatial dimensions of stimuli

– For all visible colours (HDR)

– For natural viewing (and complete adaptation)

 Applications

– Visual difference models (for complex images)
 HDR-VDP

– Better coding of HDR colour
 Improved PQ, perceptually uniform coding

– …

 More details, data and code: 
https://www.cl.cam.ac.uk/research/rainbow/projects/hdr-csf/
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Applications of OmniCSF
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Adapting image quality metrics for HDR

 To run SDR quality metrics on 
HDR images

 To make SDR quality metrics 
sensitive to display brightness
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Age-adaptive coding
 Pre-filter an image before 

image compression

 Original PNG: 6.4 bpp
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Filtered for 24-year old
4.05 bpp

Filtered for 65-year old
3.78 bpp

Filtered for 80-year old
3.709 bpp



Viewing-distance
adaptive coding
 Pre-filter an image before 

image compression

 Original PNG: 6.4 bpp
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Filtered for 0.5 m
4.05 bpp

Filtered for 1 m
3.56 bpp

Filtered for 2 m
3.39 bpp



Contrast matching
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Contrast constancy

Match?Experiment: Adjust the 
amplitude of one sinusoidal 
grating until it matches the 
perceived magnitude of 
another sinusoidal grating.

From: Georgeson and Sullivan. 1975. J. Phsysio. 34

ReferenceTest



Experimental set-up
 Appearance matching

– Each eye adapted to
different luminance level

– No binocular fusion

 The task

– Method of adjustment

– Adjust the contrast of the test stimulus to match the 
contrast of the reference stimulus

– Matching of Gabor patches of the same frequency
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ReferenceTest



Results: lines of matching contrast
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N=9 or 14

Spatial frequency in 
cycles per degree

Contrast
ΔL

𝐿

10000

Reference 
contrast



Results: lines of matching contrast
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Supra-threshold contrast matching

Contrast transducer

 [Wilson 1980]

 Indirect measurement

 Over-predicts perceived 
contrast loss at low 
luminance

Kulikowski’s model

 [Kulikowski 1976]

 Direct measurements

 Well predicts some of 
contrast matching data

Contrast at 
luminance A

Detection threshold at 
luminance A

Contrast at 
luminance B

Detection threshold at 
luminance B

Physical contrast
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Predicting contrast constancy

Georgeson & Sullivan’s 
data

Kulikowski’s model

based on OmniCSF
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Predicting data with the model
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Predictions for our data
 Kulikowski’s model works well for high frequencies
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Predictions for our data
 And not so well for lower frequencies
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Simulating and compensating for night 
vision
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WANAT, R. AND MANTIUK, R.K. 2014. 

ACM Transactions on Graphics (Proc. of SIGGRAPH) 33, 4, 147.



Image appearance at low light

 Reduced global contrast & 
brightness

 Reduced local contrast

– Small details disappear

 Changes in color

– Blue shift

– Reduced color saturation
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The algorithm
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Global contrast - tone curve

Steep slope -
contrast boosted

Low slope -
contrast compressed
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Examples of tone-curves
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Example processing

Source

Target

Simulation of
dark display

Compensation for
dark display
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The algorithm
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Local contrast processing
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Local contrast processing
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Local contrast processing
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Example processing

Source

Target

Simulation of
dark display

Compensation for
dark display
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The algorithm
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Colour perception at the mesopic luminance

Model of [Cao et al. 2008] with modifications 
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Saturation matching experiment

• Each eye 
adapted to 
different 
luminance 

• Reference 
image at 200 
cd/m2
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Example processing

Source

Target

Simulation of
dark display

Compensation for
dark display
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Comparison with other algorithms

CIECAM02

Display
adaptive

Multiscale
model

Calibrated
Im. Appear.

Perceptual
mal-adaptation

Our method

100 10 cd/m2 100  1 cd/m2 10  100 cd/m2 1  100 cd/m2 0.1  100 cd/m2
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Original Kirk & O’Brien
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Original Our method
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Age-adaptive night vision
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Is the problem solved?
 Still a few challenges ahead

– The reproduction of colour could be better
 We hope OmniCSF and our latest data can help

– We also want the compensation for the 
 viewing distance

 age

– Compensation is not always possible
 When compensated colours exceed the dynamic range

 How to design displays that offer a better 
compensation?
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Commercialization vs public domain
 The method was licensed to a start-up company

– Later acquired by a bigger company in automotive 
sector

 [Good] The method is now deployed to automotive 
displays in 100,000s of cars

– To  make displays more legible in sunlight 

– and at night driving

 [Bad] But it could be more widely applied in mobile 
displays

– Open Source code can sometimes make a bigger 
impact than $M invested 
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Summary
 OmniCSF

 And its applications

– PU encoding for quality metrics

– Pre-filtering for coding

 Contrast matching 

 Simulation and compensation
for night vision 
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