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Image systems simulation

System simulation is important in many
mature industries

cadence Tools 1  Solutions  Servic

Analog Modeling and Simulation with SPICE

cadence Tools 1P Solutions  Services  Suppo

Block-level, chip-level, and mixed-signal simulation

ECU (Electronic Control Numerical flow
Unit) Simulation for simulation on an Integrated circuitry
Automobiles Airbus A380



Imaging technology is bursting with innovation

Camera Phone Image Quality
December 7, 2006 Workshop on the Future of Meédical Imaging:

High Dynamic Range Imaging Sensing Learning ang ‘ ‘

September 10, 2009 to September 11, 2009 -

Mobile Visual Search

Dr. Joyce Farrell

December 3, 2009

3D Imaging
January 27, 2011 to January 28, 2011
The Stanford Symposium on Biomedical Imaging April 4, 2019
April 5, 2012 to April 6, 2012 A . :
Stanford University
Entertainment Technology in the Internet Age (2013) Tresidder Union, Oak Lounge
June 18, 2013 to June 19, 2013
The Workshop on Light Field Imaging: February 12, 2015 Interactive demos
Fobruary 12, 2015 Panel Discussions Research projects, clinical

ETIA 2015 Entertainment in the the Internet Age applications and startup

June 16, 2015 9:00 am to June 17, 2015 5:15 pm

Workshop on Cinematic VR and Immersive Storytelling

May 19, 2016
Workshop on Medical VR and AR
April 5, 2018

Workshop on the Future of Medical Imaging:
Sensing, Learning and Visualization

April 4, 2019 8:30 am to 6:00 pm



Imaging industry innovates frequently call on informal simulations
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We developed imaging systems simulation (ISETCam) in response to requests 4

Image Systems Engineering Toolbox for cameras (ISETCam)
* End-to-end simulation (radiance to sensor)

« Physical units (photons to electrons)

Sensor

A
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Imaging Systems Engineering Toolbox (ISETCam)
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First point



From image systems engineering for cameras to image systems for biology

g
o)

« ISET3D — Modeling scenes and optics

« ISETCam (camera design)
* Auto, Depth, Ideal, Fluorescence
« ISET3D: Human eye models (Lian)

« ISETBio: The CSF computational observer (Cottaris)



ISET3D: Modeling the input scene (spectral radiance)

« What: ISET3d is a toolbox that extends
the range of ISETBio and ISETCam inputs
from planar images to three-dimensional

SCenes.

Why: The extension to 3D is relevant to

scientists and engineers who aim to
o Model and understand the visual
encoding of natural images and stereo
vision,
o Optimize devices, including cameras and
displays, for capturing and rendering 3D
scenes (such as automotive).



ISET3D in the context of ISETCam and ISETBio

Assets and geometry Materials and lights Optics and ray tracing Receiver
Cinema 4D (ISET3d) (PBRT) (ISETBio or ISETCam)

PHYSICALLY BASED
RENDERING

From Theory to Implementation

Third Edit

3D scene
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Graphics tools for representing geometry: Cinema 4D and Blender

NEWS SOLUTIONS GALLERY LEARN TRY BUY Q American English

« There are many tools for
creating 3D scene geometries

« We use Cinema 4D and
Blender; both integrate well

With I'ay traCing methOdS FEATURES NEW IN 522 SYSTEM REQUIREMENTS INTEGRATION‘

« Maxon offers free Cinema 4D
licenses to students and

teachers and 1OW_ OI' nO_COSt Easy to learn and extremely powerful: Cinema 4D is the perfect package for all 3D artists who want to achieve breathtaking
>

results fast and hassle-free. Beginners and seasoned professionals alike can take advantage of Cinema 4D's wide range of tools
and features to quickly achieve stunning results. Cinema 4D's legendary reliability also makes it the perfect application for

“lab” licenses for schools.

demanding, fast-paced 3D production

WATCH SHOWREEL

11



Quantitative computer graphics is necessary component for materials and lights

Progress in computer graphics
enables us to create synthetic and
yet highly realistic input data.

We want simulations with
meaningful units; quantitative

computer graphics

Open-source and well
documented!

PHYSICALLY BASED
RENDERING

From Theory to Implementation
Third Edition

2



Quantitative computer graphics is necessary component for materials and lights

PBRT uses ray tracing from the sensor, through multi-

element optics, into the scene spectral radiance. It

includes accurate physics and the option to specify

physical units

We added methods to model and comp;ute

Diffraction

Human eye

Aspherical lenses

Microlens arrays

Linear models of texture maps to control surface
spectral reflectance

Fluorescence (Medical imaging)

Participating media (Underwater)
Computational imaging (CNN, Ideal observer)

PHYSICALLY BASED
RENDERING

From Theory to Implementation
Third Edition
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Asset curation







Rasterization is excellent for many purposes, but not physically accurate

® No physical quantities (e.g.,

High quality
spectral radiance, irradiance) rasterization —
: : hand-edited
[ J
Pinhole, not real optics (800 x 421)

® Bag of tricks for visual appeal (Unity)

* Attempts to be physically accurate

Ray traced —

(712X 395)
models (PBRT)

® Incorporate lens and microlens

® Produces complex visual effects



Software principles: Clarity over speed

% Start ISET and check docker

ieInit; File Edit Plot Scene Analyze Help

if ~piDockerExists, piDockerConfig; end O romeremmm 1 Gl vl
% Read a recipe for rendering a scene | T
thisR = piRecipeDefault('scene name','ChessSet'); [ :?Z;f(;::;; e

Illuminant name D65

Lum dynamic range Inf

% Set render parameters

thisR.set('film resolution’,[384 384]); 2
thisR.set('rays per pixel',96);

thisR.set('n bounces’,2);

1.5

% Write and Render

piWrite(thisR); l fl ' Y ' '= ' . I .

[scene, result] = piRender(thisR);

Luminance

Meters

100.0 cd/m2

FOV (width)

30.00 deg

% Show the radiance and depth map 105
sceneWindow(scene);

scenePlot(scene,'depth map'); .
17



ISET3D: Scenes can be quite complex and realistic

File Edit Plot Scene Analyze Help

We have more than 25 high < | scene-Jul-18,12:43 >
quality scenes like these

The geometry, reflectance,

lighting and textures can
be edited (ask me)

This collection will grow
and already includes HDR,

inter-reflections, many

types objects, materials,
textures, shadows,

occlusions

0.4 Standard RGB

Gamma Display

Name: scene-Jul-18,12:43

(Row, Col): 512 by 512

Hgt, Wdth (0.78, 0.78) m

Sample: 1.52 mm

Deg/samp: 0.07

Wave: 400:10:700 nm

DR: 114.83 dB (max 1241 cd/m2)

Adjust scene size

X1 Interp

Luminance
100.0 Sl

FOV (width)

35.98 deg
Distance
1.2 m

18




Scenes can be quite complex and realistic

File Edit Plot Scene Analyze Help

Name: scene-Jul-18,17:11
(Row, Col): 768 by 768

< scene-Jul-18,17:11 -> Hgt, Wdth (0.53, 0.53) m

. . Sample: 0.69 mm

quality scenes like these Deg/samp: 0.03

Wave: 400:10:700 nm

DR: Inf

(max 3278, min 0.00 cd/m2)

«  We have more than 25 high

« The geometry, reflectance,

lighting and textures can
be edited (ask me)

Adjust scene size

 This collection will grow X1 Interp

and already includes HDR,

inter-reflections, many

Luminance

100.0 cd/m2
types objects, materials,

FOV (width)
textures, shadows, 2500  deg
occlusions Ditencs

1.2 m
0.4 Standard RGB
Gamma Display

19




Scenes can be quite complex and realistic

Name: scene-Jul-18,12:22
(Row, Col): 512 by 512

. = scene-Jul-18,12:22 = Hgt, Wdth (1.35, 1.35) m
* We have more than 25 high Sample: 2.64 mm
. . Deg/samp: 0.11
quality scenes like these Wave: 400:10:700 nm
DR: Inf

(max 2933, min 0.00 cd/m2)

« The geometry, reflectance,
lighting and textures can

be edited (ask me)
Adjust scene size
. . . X1 < |
« This collection will grow - ntere
and already includes HDR,
. . Luminance
inter-reflections, many 1000
. . ’ cd/m2
types objects, materials, _—
textures, shadows, 58.72  deg
occlusions Distance
1.2 m

0.4 Standard RGB

Gamma Display 20




ISET3D - ISETCam applications

Assets and geometry
Cinema 4D

Materials and lights Optics and ray tracing
(ISET3d) (PBRT)

Sensor modeling
(ISETCam)

PHYSICALLY BASED
RENDERING

From Theory to Implementation
Third Edit

3D scene

Light

Pixel size

[1.4, 1.4] (um)

Fill factor

100 (%)

Surface [ Z- ¥ Well capacity 6000 (# e-)
11 g
SpeCtral power reﬂectances "J A i Roeats g PR - Voltage swing 0.4591 (volts)
= 3 z e, . Al Conversion gain 7.65 x 10 (Volts/e-)
1 D Electronics
£ AR Analog gain 1
3.5 ¥ q
t 0.8 |~Green wall bR Analog offset 0.0287
[ s ° Quantization method 10 bits
1 3 °
\ E 25 g 0.6 DSNU 0
s 8
\ - g z 8 Noise sources PRNU 0.7 (%)
Perspective | ;
% 1 Read noise 5(mv)
£ 02 1 ;
=05
08
- §
0 06
400 450 zsgvelesns:th (ns::; 6s0 700 400 450 500 550 600 650 700 Color filters ‘%M
Wavelength (nm) £
02

mmmmmmm
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ISETAuto applications

A system for generating complex physically accurate sensor
images for automotive applications

Zhenyi Liu'?, Minghao Shen®, Jiagi Zhang’, Shuangting Liu’, Henryk Blasinski', Trisha Lian', Brian Wandell’

1. Stanford University, 2. Jilin University, 3. Beihang University

Abstract

We describe an open-source simulator that creates sensor
irradiance and sensor images of typical automotive scenes in urban
settings. The purpose of the system is to support camera design and
testing for automotive applications. The user can specify scene
parameters (e.g., scene type, road type, traffic density, time of day)

il Lty o L

distributions that enable us to model the impact of wavelength-
dependent components, including the optics and sensors (Blasinski
etal. 2018).

This paper describes an open-source and freely distributed
toolbox to synthesize scene spectral radiances and sensor data for
neural network automotive applications. The software includes
procedural methods to generate a large number and variety of scenes

Neural Network Generalization: The Impact of
Camera Parameters

ZHENYI LIU 12, TRISHA LIAN2, JOYCE FARRELL2, AND BRIAN A. WANDELL?

'State Key Labaratory of Automotive Simulation and Control, Jilin University, Changchun 13000, China
“Department of Electrical Eng ing, Stanford Uni ty. Stanford, CA 94305, USA

Corresponding author: Zhenyi Liu (zhenyiliu27 @ gmail.com)
This work was supported by the Jilin University.

ABSTRACT We quantify the generalization of a convolutional neural network (CNN) trained to identify
cars. First, we perform a series of experiments to train the network using one image dataset - either
synthetic or from a camera - and then test on a different image dataset. We show that generalization between

Soft Prototyping Camera Designs for Car Detection Based on a Convolutional
Neural Network

Zhenyi Liu'2, Trisha Lian', Joyce Farrell', and Brian Wandell!

!Stanford University, USA, 2Jilin University, China
{zhenyiliu, tlian, jefarrel, wandell}@stanford.edu

ISETAuto: Detecting vehicles with depth
and radiance information

ZHENYI LIU', JOYCE FARRELL? AND BRIAN WANDELL?

'State Key Laboratory of Automotive Simulation and Control, Jilin University (e-mail: zhenyiliu27 @ gmail.com)
*Stanford University (e-mail: jefarrel, wandell @ stanford.edu)

Corresponding author: Zhenyi Liu (e-mail: zhenyiliu27 @ gmail.com)

Supported by Jilin University. We thank Boyd Fowler at Omnivision and Sergio Goma at Qualcomm for drawing our attention to prior
work on RGB-D sensor technology.

ABSTRACT Autonomous driving applications use two types of sensor systems to detect vehicles - depth
sensing LiDAR and radiance sensing cameras. We compare the performance (average precision) of a ResNet
for vehicle detection in complex, daytime, driving scenes when the input is a depth map [D = d(x,y)], a

23



Medical applications: Fluorescence

Simulated Measured

34 17
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ISET3D extension to incorporate human optics

CETEES Gullstrand/LeGrand
Article | October 2019
Ray tracing 3D spectral scenes through Navarro, 1999
human optics models Arizona
Trisha Lian; Kevin J. MacKenzie; David H. Brainard; Nicolas P. Cottaris; Brian A. Wandell
[+ Author Affiliations
Journal of Vision October 2019, Vol.19, 23. doi:https://doi.org/10.1167/19.12.23
3D scene definition 3D Physiological optics Retinal spectral irradiance

Geometry cornea

40 deg

Use computer graphics and ray-tracing to model how spectral, 3D scenes
are transformed by human optics to the retinal irradiance.

26



Comparison of eye models

The code flexibility accommodates the major human eye models
(Lian et al. 2019, Journal of Vision).

Remember: these images represent underlying spectral irradiance

Navarro LeGrand

-2.5 -1.2 0.0 1.2 25 25 -1.2 0.0 1. 2.5 -25 -1.2 0.0 1.2 2.5
space (adegs) space (degs) space (degs)



Eye model comparisons

In which we learned that there are
quantitative differences

The LeGrand eye extension of
Gullstrand — is out of compliance with
modern measurements

We can also compare with different eye
parameters

0.75F

Contrast Reduction

0.25F

0.75F

Contrast Reduction

0.25F

0.5F

3 mm pupil diameter

> Arizona
OLe Grand
ONavarro

Thibos (2002

Spatial Frequency (cycles/deg)

0.5F

4 mm pupil diameter

% Arizona
OLe Grand
CJNavarro

Thibos (2002)

25 50
Spatial Frequency (cycles/deg)

75

28



Numerical validation of the ray tracing (PBRT) methods

AN v
Watson (2013)
osk Thibos (2002)
0.7
506
* We tested whether the PBRT g
©0.5
implementation was the same as Goal
Zemax calculated Soaf
02— —
] R e
* And we compared with L. Thibos’ b L e ‘
0 10 20 30 40 50 60 70 80 90 100
Spatial Frequency (cycles/deg)
data from a large number of eyes — T
which is the basis of the Watson
S S
summary as well B Navarro Eye L/ 7 e
1o,  (ISET3d) ’I”':-:.-':.fi#'5~'i~'ii
S 0.8
* We can calculate as a function of § Oy
0.4
wavelength, too £ o
3 00+
0
450 06\
500 50 \,e“d ©
Wave/ength n 650 30 " a\geQ



This is the position
of the left eye

from = thisEye.get(‘from’)

It is the ‘from’ parameter in
the recipe

ISET3d: Making a stereo pair

Left eye

ISET-Optics

File Edit Plot Optics Analyze Help

Gamma

<|  LeftView =

Stan... Compute Optical Image .

Display

Optical image

Size: [320, 320] samples
Hgt, wdth: [13.31, 13.31] mm

Sample: 41.60 um

Wave: 400:10:700 nm

llum: 62.8 lux

FOV (wide): 44.4 deg
Optics (iset3d)

Diameter: 4.00 mm

Lens density: 0.00

iset3d




ISET3d: Making a stereo pair

Right eye

Move the camera position
by 6 cm to the right

newFrom = from + (0.060, 0, 0)

thisEye.set(‘from’,newFrom)
oiRight = thisEye.render;

@] ® ISET-Optics
File Edit Plot Optics Analyze Help

<~ Right View B

1 Stan... ﬁ Compute Optical Image .

Gamma Display

Optical image
Size: [320, 320] samples
Hgt, wdth: [13.31, 13.31] mm
Sample: 41.60 um
Wave: 400:10:700 nm
Illum: 62.8 lux
FOV (wide): 44.4 deg
Optics (iset3d)
Diameter: 4.00 mm
Lens density: 0.00

iset3d 2




Natural images - Image formation (optics) models and quantitative graphics

Inert pigments (e.g., lens transmission) are included and controlled

Left eye

1 Standar... g3

Gamma  Display

Compute Optical image

Optical image

Size [512, 512] samples
Hgt.wdth: [B.75, 8.75] mm
Sample: 17.08 um

Wave: 400:10:690 nm
Blum: 10.0 fux

FOV (wmde): 30.0 deg
Optics (DU)

Mag: 0.00e+00

Diameter: 6.00 mm

Diffraction-Himsted v

F-number Focal Length

2.72 1632 | ‘mm

© Off axis {cosdth)

Anti-alias

Skip i

1 Standar.. &3

Gamma Display

Left with Lens ¥

Compute Optical image

Remember: these images represent underlying spectral irradiance

Optical image
Size [512, 512] samples
Hgt.wath: [8.75, B.75] mm
Sample: 17,08 um
Wave: 400:10:690 nm
Blum B.4 lux
FOV (wice): 30.0deg
Optics (DL)
Mag: 0.00e+00
Diameter: 6.00 mm

Diffraction-limited [~ ]

F-number Focal Length

16.32 mm

© Off axws (cosdth)

Anti-alias

Skap 1<)



Vergence and Accommodation

Where the eye (or eyes) is looking is controlled
thisEye.set(‘to’,loc)

1.66 D (Left) 1.66 dpt (Right)

Remember: these images represent underlying spectral irradiance



@ retinal image cone mosaic @ cone photopigment
object object object => object mosaic excitation

photons/pixels/nm/sec photons/pixels/nm/sec R*/cone/sec

« ISETBIo is a set of computational tools to model how light from a scene
is encoded and processed by visual circuitry.

« One goal is to make the results of 200 years of quantitative vision
research easily available for computation.

« ISETBio can be used to clarify the impact of different elements of the
eye and neural processing on visual perception and performance.

34



ISETBio components — retinal image and cone isomerizations

retinal image
object

cone mosaic
object

A =450 nm

A =532 nm

A=624n

A=708n
-
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ISETBio components — retinal image and cone isomerizations

retinal image cone mosaic cone photopigment
object mosaic excitation

A =450 nm ) .%. ® .. ...zo........

®
Yo
)
o
H
Sase
o"e%:0
0%
£
eoe .'o
090
o....
i
Gt
paseee
o ()
o :‘

A =532 nm 00

00
e
)
oo
00 :
2]
o
o:o
e
e
©

©
oo
®®
.:.. Y e )
900
[}

13

o0

(3]

(3

o

o

he

o
4
[S)
() .::
.S
%
O

2
5

&
.;...

2
3
°
°
%0
()
.
...
>
(2]
e et oate
oo
0)
(¥
S
%
o0
o
54
®

i
¥

..
f2]
s
(1) 5
o6
..
o
%
-
()
S
(o]
(%)
° [ )
335

se
set
3
...
.3. 5
0 .o:. 7Y
e
3:.:
o:.
°

R e R S
N e
s.... .:..:: ‘:....0....;;:;0. .O:’. S..:...%.:.c.%g:.g (XX
esateisitst °.'=.o0" .'2:'.32.:.0':‘030 28000000 otee23%®

R ARy £ Rt LK R ‘.3:".',:-’:33-::}'.:

R R B R R S O 2
::: .::.. .. ... .:..... .. :8 :O.. o. .:: 0. : .... Y J :.. '... 3% © ‘33:30
e AR R R R i

0%06°5%2028 020% 0e%® 19000008
3 Ay R I R S R A XX L
gt A P

36

photons/pixels/nm/sec R*/cone/sec



OM“OO..O “0”@00 o o, % ooolooooo.ﬂo
o

9”..0“9.%0 ‘000000000”,0 %0 So
3 0“.0 o 0“00...0.

c = 100%, sf = 16 c/deg

. .
,oooo‘ooo"otoo
009° 008 0055506

Q [N 00900 “ 009°
W.. 0 .Q..
,..'.. 0g0°
- 090

)

sf

I

scene (c

7))
o+
/p)
av
i
)
o
®
O
)
-
D)
D
am
o p—
o
)
av;
7))
o0
-
o p—
)
av;
Pt
o0
O
)
/)
a
@)
o pi
)
qv;
N
o =
av;
P
=
o
/)
Y
)
o p—
qv;
7]
=
<D)
a
@)
O
O
p—
=
qv;
PS
6d

37

Courtesy Nicolas Cottaris



Ideal observer accounts for shape of CSF rolloff at increasing SF

* The original work from Banks et
al. (1987) compared the high
frequency roll-off predicted using
an ideal observer and measured
with a few real observers

* The predictions were based on
formulae and various simplifying
assumptions about the mosaic

contrast sensitivity
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Ideal observer accounts for shape of CSF roll-off at increasing SF

10000 - T T | T T T 1] I T 1 1 T 1]
- — ideal observer (Banks '87)
. . 5000 [~ A A human observers (Banks '87

* The original work from Banks et I ( - )
al. (1987) compared the high 2000 s, ~
frequency roll-off predicted using 1000 - b .
an ideal observer and measured 500 - "‘ =
with a few real observers S I \\ i

% 200 — . ‘ -

* The predictions were based on ,g 100 - v 7S \\ -
formulae and various simplifying g 50 '\ u
assumptions about the mosaic 3 - A X -

20 - A \ 2
A A \
* The shapes were in good 10- A, E
alignment 5 A .
_ A _
A
2 A -
l | | I 11 | I | | | I 11 1

2 5 10 20 50
spatial frequency (c/deg) 39



ISETBio validation: reproduce earlier ideal observer calculation

line spread function -
based optics

(based on Campbell & Gubisch '66)

constant cone
density mosaics

contrast sensitivity
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Accounting for absolute sensitivity: modern estimates of optics/mosaic

Wavefront aberration -
based optics

(from Thibos et al. ’92)

Eccentricity-dependent
density mosaics

Aol S

09 .0g CO)
0020%0,2045°05%0,05
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Accounting for absolute sensitivity: partially learned classifier

10000 £ — T [ 7 77| meQOm= Banks ‘87 CSF
5000 f_ A A human observe_rs (Banks '87)
2000 [~ —

Computational observer 1000 £ =
> 500- -
s -
g 200 — —
@

o 100- -
:a C ]
S C _‘
> S0 - i
<) i i
Q
20 —
10 =
51 2
2 — —
l | | I | I | I I | | I 11 1
2 5 10 20 50
spatial frequency (c/deg) 42




Accounting for absolute sensitivity: fixational drift

fixational eye cone photopigment
movement object excitation sequence

excitation

0OGER203208 R*/cone/sec o )




Energy computations (quadrature filters) reduce the impact of fixational drift

fixational eye movements
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cone photopigment
excitation sequence

Photocurrent transduction

outer segment
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Accounting for absolute sensitivity: photocurrent transduction

1. Updated optics & cone mosaic modeling has a

minor impact relative to the Banks ‘87 estimate
(factor of 1.7 at 2 c/deg),

. Computational observers, which learn visual tasks
by observing neural responses, result in a significant
sensitivity drop across the entire spatial frequency
range (accumulated factor of 2-3).

. Inclusion of fixational eye movements, requires non-
linear computational observers, and further reduces
sensitivity across the entire spatial frequency range
(accumulated factor: 7-10).

. Inclusion of photocurrent encoding further reduces
sensitivity approaching psychophysical limits
(accumulated factor:18-30).

contrast sensitivity
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Third point






Simulation technologies for image systems engineering
Brian A. Wandell
Stanford Center for Image Systems Engineering
Department of Psychology

The number and type of imaging systems has grown enormously over the last several decades; these systems are an
essential component in mobile communication, medicine, automotive and drone applications. Imaging systems are
also increasingly used with deep learning systems that require large amounts of training data. For these reasons
software prototyping has become an essential tool for the design, evaluation and training of modern image systems. I
will describe three closely related open-source and freely available image systems engineering toolboxes, ISETCam,
ISETBio, and ISET3d that are designed to support design and evaluation of image systems. The presentation will
include several examples of how we model the three-dimensional scene spectral radiance, retinal encoding
(physiological optics and cone sampling), and image systems hardware (multi-element lenses, image sensors). We are
working with the goal of building image systems simulation infrastructure that can speed the development of new
systems as academia and industry rise to meet many new opportunities.

Related publications

ISETAuto: Detecting vehicles with depth and radiance information (2021). Zhenyi Liu, Joyece Farrell, Brian Wandell, IEEE Access 10.1109/ACCESS.2021.3063692

A system for generating complex physically accurate sensor images for automotive applications (2019). Zhenyi Liu, Minghao Shen, Jiagi Zhang, Shuangting Liu, Henryk Blasinski,
Trisha Lian, Brian Wandell. IS&T Electronic Imaging Conference, San Francisco.

Ray tracing 3D spectral scenes through human optics models (2019). Trish Lian, Kevin McKenzie, David Brainard, Nicolas Cottaris, Brian Wandell. Journal of Vision October
2019, Vol.19, 23. doi:https://doi.org/10.1167/19.12.23

A computational observer model of spatial contrast sensitivity: Effects of photocurrent encoding, fixational eye movements and inference engine (2020). Nicolas P. Cottaris, Brian
A. Wandell, Fred Rieke, David H. Brainard Journal of Vision doi:https://doi.org/10.1167/jov.20.7.17

See the wiki pages of the repositories at: https://github.com/ISET 49



http://scarlet.stanford.edu/~brian/papers/ise/2021-IEEE-Access-Depth.pdf
http://scarlet.stanford.edu/~brian/papers/mri/2020-CurrentBiology-Masuda.pdf
http://arxiv.org/abs/1902.04258
https://jov.arvojournals.org/article.aspx?articleid=2753752
https://doi.org/10.1167/19.12.23
https://jov.arvojournals.org/article.aspx?articleid=2770341
https://doi.org/10.1167/jov.20.7.17
https://github.com/ISET

3D scene spectral radiance in the world and at the eye

Gershun (1936) Adelson and Bergen (1991)

Ray intensities: L(x,y,z,a,3,A,0) Ray intensities: L(u,v,a,[3,\)
Position (x,y,z) Position (u,v)
Azimuth and elevation (a, ) Azimuth and elevation (a, )

Wavelength (A) ‘ Wavelength ()
Polarization (0)

Light field

\\
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e representation

The world bem_nd ;

must be accounted for in the simulation 50
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Ray trace and depth occlusions

The point spread function depends on the

distance of the point (depth of field; geometric
blur)

In addition, the point spread depends on the
presence of occluding edges in the scene

Rays from a distant point are blocked by the
near (occluding) surface

Knowledge of the point spread as function of
distance is not enough for an accurate 3D scene
rendering — the rendering is scene dependent!

: The point spread at occluding edges

Lens PSF without

Point occluder

Occluding edge in
the scene Lens

Point [

occluder is
shifted and

smaller
52




Calculating cone responses and eye movements

GitHub wiki video pages

Retinal Irradiance Cone Mosaic Cone Excitations
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https://github.com/isetbio/isetbio/wiki/ISETBio-Videos
https://github.com/iset/isetcam/wiki/ISETCam-Videos

For many types of stimuli the Ideal and ResNet had the same sensitivity!
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Example code: User’s perspective

*  We aim to make the top-level code easily
understood. The computations are
embedded in methods, often the set/get
methods

« The sceneEye models a spherical eyeball
and a curved retina, with inert pigments

Cornea

Retina

The sceneEye class constructor

thisSE = sceneEye('letters at depth’, 'human eye’, legrand’);

PBRT files

>> thisSE
thisSE =
sceneEye with properties:

name: 'lettersAtDepth’
modelName: 'legrand’
usePinhole: 0
recipe: [1x1 recipe]
lensDensity: 1

Human eye model
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Example code

The code doing the
computational work in ISET3d is
managed within

« The set/get methods
« PBRT calculations

You can ‘set’ many camera,
rendering, and scene parameters

You can ‘get’ many more
parameters by calculation

There are a number of methods
‘render’,’summary’ and others

Suppose you are in focus at the proper distance to the edge. And we turn
on chromatic aberration. That will slow down the calculation, but makes
it more accurate and interesting. We only use 8 spectral bands for
speed. You can use up to 31l.

nSpectralBands = 8;

thisSE.set('chromatic aberration',nSpectralBands);

o® of o° o°

% This is the distance we calculate above
thisSE.set('focal distance',1);

% Controls the rendering noise vs. speed by setting the number of rays.
thisSE.set('rays per pixel',128);

% Increase the spatial resolution by adding more spatial samples.
thisSE.set('spatial samples',384);

% This takes longer than the pinhole rendering, so we do not bother with
% the depth.

oi = thisSE.render('render type', 'radiance');

oiWindow(oi);
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ISET3d: Making a stereo pair

%% Make an oi of the chess set scene using the LeGrand eye model

thisSE = sceneEye('chess set scaled', 'human eye', 'navarro');

e This ISET3d code makes
the stereo pair of the Chess

thisSE.set('lens density',0); % Just because I can

. . . . thisSE.set('rays per pixel',512); % Pretty quick, but not high quality
retinal irradiance, imaged
oiLeft = thisSE.render; % Render radiance and depth, and then show

through the Navarro model oiWindow(oileft):

eye : s
%% Shift the eye position
. . PR Change the eye position (from) but stay focused on the same object (to).
I set the lens density to "o I shifted the eye position by a lot (12 mm) so the image difference is be
easy to see. The inter-pupil difference is really only 6-8 cm

°
"
o
i)
°
"

so the scene would not look

very yellow. I will explain fromLeft = thisSE.get('from'); % Current camera location
c Ll fromRight = fromLeft + [6,0,0]x1le-2; % Shift it 6 cm
this in a moment thisSE.set('from',fromRight);

oiRight = thisSE.render('render type', 'radiance');
oiWindow(oiRight);

o7



ISETBio components — scene and retinal image

scene .:> optics
object object

A =450 nm
A =532 nm

A=624n
2

viewing
distance

i 58
photons/pixels/nm/sec Courtesy Nicolas Cottaris



ISETBio components — scene and retinal image

scene
object

retinal image
object

photons/pixels/nm/sec

A =450 nm

A =550 nm

A =530 nm

A =700 nm

"b
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A =450 nm

A =532 nm
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Thank you for your attention

Brian A. Wandell

Stanford Center for Image Systems Engineering
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Stanford Center for Cognitive and
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