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Image systems simulation

System simulation is important in many 
mature industries

Numerical flow 
simulation on an 

Airbus A380

ECU (Electronic Control 
Unit) Simulation for 

Automobiles
Integrated circuitry



Imaging technology is bursting with innovation

Interactive demos 
Research projects, clinical 
applications and startup 

ventures. 

Panel Discussions

Dr. Joyce Farrell



Imaging industry innovates frequently call on informal simulations

Light field 360 Surround Video

RGB-depth

Multiple lens

Massive resolution

Global 
shutter

Stacked 
sensor

Dual pixel autofocus

RCCC automotive

• Informal 
simulations occur 
routinely in the 
imaging industry

• Software 
development is 
usually custom, 
in-house



We developed imaging systems simulation (ISETCam) in response to requests

Image Systems Engineering Toolbox for cameras (ISETCam) 
• End-to-end simulation (radiance to sensor) 

• Physical units (photons to electrons)
Optics

Sensor

Display



More than 500 users in 
80 companies, 

9 research institutes,  
65 universities, 
in 24 countries

Open Sourced on GitHub 
in 2018

Imaging Systems Engineering Toolbox (ISETCam)



First point

Image systems simulation software that is trusted by key 

stakeholders in industry and academia can speed the 

development of next generation image sensors, camera arrays 

and displays.  



From image systems engineering for cameras to image systems for biology

• ISET3D – Modeling scenes and optics

• ISETCam (camera design)

• Auto, Depth, Ideal, Fluorescence

• ISET3D: Human eye models (Lian)

• ISETBio: The CSF computational observer (Cottaris)Brian Wandell David Brainard E.J. ChichilniskyFred Rieke
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ISET3D:  Modeling the input scene (spectral radiance)

• What: ISET3d  is a toolbox that extends 
the range of ISETBio and ISETCam inputs 
from planar images to three-dimensional 
scenes. 

• Why: The extension to 3D is relevant to 
scientists and engineers who aim to 
o Model and understand the visual 

encoding of natural images and stereo 
vision, 

o Optimize devices, including cameras and 
displays, for capturing and rendering 3D 
scenes (such as automotive). 

Simulated scene
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ISET3D  in the context of ISETCam and ISETBio

Materials and lights 
(ISET3d)

Optics and ray tracing
(PBRT)

Assets and geometry
Cinema 4D

Receiver
(ISETBio or ISETCam)

Light
spectral power

Surface
reflectances

Light

Graphics model

Perspective

Replace with pure mesh

3D scene

Perspective

CNNs
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Graphics tools for representing geometry: Cinema 4D and Blender

• There are many tools for 
creating 3D scene geometries

• We use Cinema 4D and 
Blender; both integrate well 
with ray tracing methods

• Maxon offers free Cinema 4D 
licenses to students and 
teachers, and low- or no-cost 
“lab” licenses for schools. 
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Quantitative computer graphics is necessary component for materials and lights

• Progress in computer graphics 
enables us to create synthetic and 
yet highly realistic input data.

• We want simulations with 
meaningful units; quantitative 
computer graphics

• Open-source and well 
documented!
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PBRT uses ray tracing from the sensor, through multi-
element optics, into the scene spectral radiance.  It 
includes accurate physics and the option to specify 
physical units

We added methods to model and comp;ute
• Diffraction
• Human eye
• Aspherical lenses
• Microlens arrays
• Linear models of texture maps to control surface 

spectral reflectance
• Fluorescence (Medical imaging)
• Participating media (Underwater)
• Computational imaging (CNN, Ideal observer)

Quantitative computer graphics is necessary component for materials and lights
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Asset curation

ASSIGN MATERIAL
TO 3D MESH

WindowMirror

Car Paint

Head lights
Tire

Rim
Number plate

Tail light

Change 
Appearance
Set Pivot Point to 
Move object freely
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Simulated
15



Rasterization is excellent for many purposes, but not physically accurate

High quality 
rasterization –

hand-edited 
(800 x 421) 

(Unity)

• No physical quantities (e.g., 

spectral radiance, irradiance)

• Pinhole, not real optics

• Bag of tricks for visual appeal

Ray traced –
(712 x 395) 

(PBRT)

• Attempts to be physically accurate

• Incorporate lens and microlens

models

• Produces complex visual effects
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Software principles: Clarity over speed

% Start ISET and check docker
ieInit;
if ~piDockerExists, piDockerConfig; end

% Read a recipe for rendering a scene
thisR = piRecipeDefault('scene name','ChessSet');

% Set render parameters
thisR.set('film resolution’,[384 384]);
thisR.set('rays per pixel',96);
thisR.set('n bounces’,2); 

% Write and Render
piWrite(thisR);
[scene, result] = piRender(thisR);

%  Show the radiance and depth map
sceneWindow(scene);
scenePlot(scene,'depth map');
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ISET3D: Scenes can be quite complex and realistic

• We have more than 25 high 
quality scenes like these

• The geometry, reflectance, 
lighting and textures can 
be edited (ask me)

• This collection will grow 
and already includes HDR, 
inter-reflections, many 
types objects, materials,  
textures, shadows, 
occlusions 
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Scenes can be quite complex and realistic

• We have more than 25 high 
quality scenes like these

• The geometry, reflectance, 
lighting and textures can 
be edited (ask me)

• This collection will grow 
and already includes HDR, 
inter-reflections, many 
types objects, materials,  
textures, shadows, 
occlusions 
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ISET3D  - ISETCam applications

Materials and lights 
(ISET3d)

Optics and ray tracing
(PBRT)

Assets and geometry
Cinema 4D

Properties Parameters Values (units)

Geometric
Pixel size [1.4, 1.4] (um)
Fill factor 100 (%)

Electronics

Well capacity 6000 (# e-)

Voltage swing 0.4591 (volts)

Conversion gain 7.65 x 10-5 (Volts/e-)

Analog gain 1

Analog offset 0.0287

Quantization method 10 bits

Noise sources
@ Analog gain = 1

DSNU 0

PRNU 0.7 （%）

Dark voltage 0

Read noise 5 (mV)

Color filters

Sensor modeling
(ISETCam)

Light
spectral power

Surface
reflectances

Light

Graphics model

Perspective

Replace with pure mesh

3D scene

Perspective
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Quantitative validation of 3D scene and camera models

Surface spectral 
reflectanceIlluminant SPD

Measured

Simulated
~1.28 

x

~1.26
x

22
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ISETAuto applications
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Medical applications: Fluorescence
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3D
model

Light

Camera

Texture
map

Fluoresce
nce

Optics

Sensor

Glossy reflectionIncident light
Diffuse reflection

Fluorescence

Mouth tissue

a) b) c)Reflectance Simulated Measured



Second point
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Image systems simulation software involves skills that are 

beyond the capabilities of most academic labs and many 

commercial ventures (particularly startups).

To speed progress, we might build and share consensus 

(validated) tools



Materials

Geometry

3D scene definition

ISET3D extension to incorporate human optics
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450 nm

510 nm

600 nm

640 nm

lens
retina

cornea

pupil

3D Physiological optics Retinal spectral irradiance

450 nm

450 nm

510 nm

600 nm

640 nm

40 deg

Use computer graphics and ray-tracing to model how spectral, 3D scenes 
are transformed by human optics to the retinal irradiance.

Gullstrand/LeGrand
Navarro, 1999
Arizona



Comparison of eye models
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The code flexibility accommodates the major human eye models
(Lian et al. 2019, Journal of Vision). 

A B CArizona Navarro LeGrand

Gullstrand/LeGrand

Remember:  these images represent underlying spectral irradiance



Eye model comparisons
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3 mm pupil diameter

4 mm pupil diameter

• In which we learned that there are 
quantitative differences

• The LeGrand eye extension of 
Gullstrand – is out of compliance with 
modern measurements

• We can also compare with different eye 
parameters



Numerical validation of the ray tracing (PBRT) methods

• We tested whether the PBRT 
implementation was the same as 
Zemax calculated

• And we compared with L. Thibos’ 
data from a large number of eyes –
which is the basis of the Watson 
summary as well

• We can calculate as a function of 
wavelength, too



ISET3d:  Making a stereo pair
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Left eye

This is the position 
of the left eye

from = thisEye.get(‘from’)

It is the ‘from’ parameter in 
the recipe



ISET3d:  Making a stereo pair
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Move the camera position 
by 6 cm  to the right

newFrom = from + (0.060, 0, 0)

thisEye.set(‘from’,newFrom)
oiRight = thisEye.render;

Right eye



Natural images - Image formation (optics) models and quantitative graphics
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Left eye

Inert pigments (e.g., lens transmission) are included and controlled

Remember:  these images represent underlying spectral irradiance



Vergence and Accommodation
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64 mm

Where the eye (or eyes) is looking is controlled 
thisEye.set(‘to’,loc)

Remember:  these images represent underlying spectral irradiance



• ISETBio is a set of computational tools to model how light from a scene 
is encoded and processed by visual circuitry.
• One goal is to make the results of 200 years of quantitative vision 
research easily available for computation.

• ISETBio can be used to clarify the impact of different elements of the 
eye and neural processing on visual perception and performance.

Image System Engineering Tools for Biology (ISETBio)
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retinal image
object

photons/pixels/nm/sec

cone mosaic
object

ISETBio components – retinal image and cone isomerizations

Courtesy Nicolas Cottaris
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retinal image
object

cone mosaic
object

photons/pixels/nm/sec

cone photopigment 
mosaic excitation

R*/cone/sec

ISETBio components – retinal image and cone isomerizations
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c = 0scene (c, sf) c = 100%, sf = 16 c/deg

Example: cone mosaic isomeraizations to gratings at different contrasts

Courtesy Nicolas Cottaris
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ideal observer (Banks ’87)
human observers (Banks ’87)

Ideal observer accounts for shape of CSF rolloff at increasing SF

38

• The original work from Banks et 
al. (1987)  compared the high 
frequency roll-off predicted using 
an ideal observer and measured 
with a few real observers

• The predictions were based on 
formulae and various simplifying 
assumptions about the mosaic



ideal observer (Banks ’87)
human observers (Banks ’87)

Ideal observer accounts for shape of CSF roll-off at increasing SF
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• The original work from Banks et 
al. (1987)  compared the high 
frequency roll-off predicted using 
an ideal observer and measured 
with a few real observers

• The predictions were based on 
formulae and various simplifying 
assumptions about the mosaic

• The shapes were in good 
alignment



line spread function -
based optics

(based on Campbell & Gubisch ’66)

ideal observer (Banks ’87)

human observers MSB, PJB (Banks ’87)
ISETBio ideal observer

constant cone 
density mosaics

ISETBio validation: reproduce earlier ideal observer calculation
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Banks ’87 CSF
human observers (Banks ’87)

Wavefront aberration -
based optics

(from Thibos et al. ’92)

Eccentricity-dependent 
density mosaics

(based on Curcio et al. ’90)

Accounting for absolute sensitivity: modern estimates of optics/mosaic
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Computational observer

Banks ’87 CSF
human observers (Banks ’87)

Accounting for absolute sensitivity: partially learned classifier
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cone 
photopigment 

excitation

fixational eye 
movement object

cone photopigment 
excitation sequence

R*/cone/sec

Accounting for absolute sensitivity: fixational drift
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0.2 deg

+

quadrature computational observer

fixational eye movements

Banks ’87 CSF
human observers (Banks ’87)

Energy computations (quadrature filters) reduce the impact of fixational drift
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outer segment 
object

cone photopigment 
excitation sequence

cone outer-segment
photocurrent response

pAmpsR*/cone/sec
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Time:  Photocurrent transduction
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2 mm pupil, average Thibos subject

1. Updated optics & cone mosaic modeling has a 
minor impact relative to the Banks ’87 estimate 
(factor of 1.7 at 2 c/deg),

2. Computational observers, which learn visual tasks 
by observing neural responses, result in a significant 
sensitivity drop across the entire spatial frequency 
range (accumulated factor of 2-3).

3. Inclusion of fixational eye movements, requires non-
linear computational observers, and further reduces 
sensitivity across the entire spatial frequency range 
(accumulated factor: 7-10). 

4. Inclusion of photocurrent encoding further reduces 
sensitivity approaching psychophysical limits              
(accumulated factor:18-30).

Banks ’87 CSF
human observers (Banks ’87)

Accounting for absolute sensitivity: photocurrent transduction
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Third point

Modeling the the visual pathways can be helpful in 

understanding how the complex array of biological 

factors combine to limit performance



Fourth point

Visual system simulation might be best understood 

in the broader context of image systems simulation 

– the visual system is a key element of many 

imaging systems



Simulation technologies for image systems engineering
Brian A. Wandell

Stanford Center for Image Systems Engineering
Department of Psychology

The number and type of imaging systems has grown enormously over the last several decades; these systems are an 
essential component in mobile communication, medicine, automotive and drone applications. Imaging systems are 
also increasingly used with deep learning systems that require large amounts of training data. For these reasons 
software prototyping has become an essential tool for the design, evaluation and training of modern image systems. I 
will describe three closely related open-source and freely available image systems engineering toolboxes, ISETCam, 
ISETBio, and ISET3d that are designed to support design and evaluation of image systems. The presentation will 
include several examples of how we model the three-dimensional scene spectral radiance, retinal encoding 
(physiological optics and cone sampling), and image systems hardware (multi-element lenses, image sensors). We are 
working with the goal of building image systems simulation infrastructure that can speed the development of new 
systems as academia and industry rise to meet many new opportunities.

Related publications
ISETAuto: Detecting vehicles with depth and radiance information (2021). Zhenyi Liu, Joyece Farrell, Brian Wandell, IEEE Access 10.1109/ACCESS.2021.3063692
A system for generating complex physically accurate sensor images for automotive applications (2019). Zhenyi Liu, Minghao Shen, Jiaqi Zhang, Shuangting Liu, Henryk Blasinski, 
Trisha Lian, Brian Wandell. IS&T Electronic Imaging Conference, San Francisco.
Ray tracing 3D spectral scenes through human optics models (2019). Trish Lian, Kevin McKenzie, David Brainard, Nicolas Cottaris, Brian Wandell. Journal of Vision October 
2019, Vol.19, 23. doi:https://doi.org/10.1167/19.12.23
A computational observer model of spatial contrast sensitivity: Effects of photocurrent encoding, fixational eye movements and inference engine (2020). Nicolas P. Cottaris, Brian 
A. Wandell, Fred Rieke, David H. Brainard Journal of Vision doi:https://doi.org/10.1167/jov.20.7.17

See the wiki pages of the repositories at: https://github.com/ISET 49

http://scarlet.stanford.edu/~brian/papers/ise/2021-IEEE-Access-Depth.pdf
http://scarlet.stanford.edu/~brian/papers/mri/2020-CurrentBiology-Masuda.pdf
http://arxiv.org/abs/1902.04258
https://jov.arvojournals.org/article.aspx?articleid=2753752
https://doi.org/10.1167/19.12.23
https://jov.arvojournals.org/article.aspx?articleid=2770341
https://doi.org/10.1167/jov.20.7.17
https://github.com/ISET


3D scene spectral radiance in the world and at the eye

Gershun (1936)

Ray intensities: L(x,y,z,α,β,λ,θ)
Position (x,y,z)
Azimuth and elevation (α, β)
Wavelength (λ)
Polarization (θ)

Ray intensities: L(u,v,α,β,λ)
Position (u,v)
Azimuth and elevation (α, β)
Wavelength (λ)

Adelson and Bergen (1991)

Light field

Plenoptic 
function

The world beyond the RGB image representation
must be accounted for in the simulation 50
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Ray trace and depth occlusions: The point spread at occluding edges
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Occluding edge in 
the scene

• The point spread function depends on the 
distance of the point (depth of field; geometric 
blur)

• In addition, the point spread depends on the 
presence of occluding edges in the scene

• Rays from a distant point are blocked by the 
near (occluding) surface 

• Knowledge of the point spread as function of 
distance is not enough for an accurate 3D scene 
rendering – the rendering is scene dependent!

PSF without 
occluder

PSF with 
occluder is 
shifted and 

smaller

Point

Point

Lens

Lens



Calculating cone responses and eye movements

Cottaris, N. P., Jiang, H., Ding, X., Wandell, B. A., & Brainard, D. H. (2019). A computational-
observer model of spatial contrast sensitivity: Effects of wave-front-based optics, cone-mosaic 
structure, and inference engine. Journal of vision, 19(4), 8-8.

Retinal Irradiance Cone Mosaic Cone Excitations

Eye movements

https://github.com/isetbio/isetbio/wiki/ISETBio-Videos
https://github.com/iset/isetcam/wiki/ISETCam-Videos

GitHub wiki video pages

5
3

https://github.com/isetbio/isetbio/wiki/ISETBio-Videos
https://github.com/iset/isetcam/wiki/ISETCam-Videos


For many types of stimuli the Ideal and ResNet had the same sensitivity!

Ideal 
observer

ResNet SVM
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Example code:  User’s perspective
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• We aim to make the top-level code easily 
understood.  The computations are 
embedded in methods, often the set/get 
methods

• The sceneEye models a spherical eyeball 
and a curved retina, with inert pigments

The sceneEye class constructor 

PBRT files Human eye model

thisSE = sceneEye('letters at depth’,  'human eye’, 'legrand');

>> thisSE

thisSE = 

sceneEye with properties:

name: 'lettersAtDepth'
modelName: 'legrand'
usePinhole: 0

recipe: [1×1 recipe]
lensDensity: 1

Radius

Semidiam

12 mm

Focal distance 
16.2 mm

Cornea

Lens

Retina



Example code
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• The code doing the 
computational work in ISET3d is 
managed within

• The set/get methods
• PBRT calculations

• You can ‘set’ many camera, 
rendering, and scene parameters

• You can ‘get’ many more 
parameters by calculation

• There are a number of methods 
‘render’,’summary’ and others



ISET3d:  Making a stereo pair
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• This ISET3d code makes 
the stereo pair of the Chess 
retinal irradiance, imaged 
through the Navarro model 
eye

• I set the lens density to “0” 
so the scene would not look 
very yellow.  I will explain 
this in a moment



lens

P’

P

viewing 
distance

focal 
length

pupil

optics 
object

scene
object

photons/pixels/nm/sec

ISETBio components – scene and retinal image

Courtesy Nicolas Cottaris
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scene
object

optics 
object

photons/pixels/nm/sec

retinal image
object

photons/pixels/nm/sec

ISETBio components – scene and retinal image
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Sixth point

Many modern computer science methodologies can 

make these ideas into a useful industrial and 

academic tool – database extensions, cloud-scaling, 

platform independence.

Building a consensus (validated) platform will be 

beneficial to the imaging industry



Thank you for your attention
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