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A B S T R A C T

This paper explores the application of various machine-learning methods for charac-
terizing displays of technologies LCD, OLED, and QLED to achieve accurate color
reproduction. These models are formed from input (device-dependent RGB data) and
output (device-independent XYZ coordinates) data obtained from three different dis-
plays. Training and test datasets are built using RGB data measured directly from the
displays and corresponding XYZ coordinates measured with a high-precision colorime-
ter. A key aspect of this research is the application fuzzy inference systems for building
interpretable models. These models offer the advantage of not only achieving good
performance in color reproduction, but also providing physical insights into the rela-
tionships between the RGB inputs and the resulting XYZ outputs. This interpretability
allows for a deeper understanding of the display’s behavior. Furthermore, we compare
the performance of fuzzy models with other popular machine-learning approaches, in-
cluding those based on neural networks and decision trees. By evaluating the strengths
and weaknesses of each method, we aim to identify the most effective approach for
display characterization. The effectiveness of each method is assessed by its ability to
accurately reproduce and display colors, as measured by the ∆E00 visual error metric.
Our findings indicate that the Fuzzy Modeling and Identification (FMID) method is
particularly effective, allowing for an optimal balance between high accuracy and in-
terpretability. Its competitive performance across all display types, combined with its
valuable interpretability, provides insights for potential future calibration and optimiza-
tion strategies. The results will shed light on whether machine learning methods offer
an advantage over traditional physical models, particularly in scenarios with limited
data. Additionally, the study will contribute to the understanding of the interpretability
benefits offered by fuzzy inference systems in the context of LCD display characteriza-
tion.
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1. Introduction

Display characterization is becoming increasingly important
due to the ever-expanding variety of displays appearing in the
market. Consumers and manufacturers alike look for new vi-
sual experiences and more accurate image reproduction [1, 2].
However, achieving this fidelity relies heavily on a thorough
display characterization process [1]. Poor characterization can
lead to displays with color casts, inaccurate saturation, or even
banding, resulting in a distorted and unpleasant viewing experi-
ence [3]. Conversely, effective characterization guarantees the
vibrant colors and lifelike visuals that consumers expect from
modern displays.

Display characterization refers to the measurement and de-
scription of a display’s behavior. This process is critical be-
cause it establishes the objective/mathematical link between the
desired colors, and their actual representation on the screen [4].
Designers meticulously craft images using specific colors ex-
pressed in device-independent color spaces, such as XYZ tris-
timulus values or xyY color coordinates [5]. These values de-
fine the ”ideal” colors intended for display. Display character-
ization bridges the gap by translating these device-independent
values into the display’s native language – its RGB values. This
translation ensures that the displayed colors closely resemble
the designer’s original vision [6].

The main goal in display characterization is the creation of
a model that maps a digital-to-analog converter (DAC) input
featuring an RGB vector to the display’s output, expressed in a
device-independent color space (typically XYZ tristimulus val-
ues or xyY color coordinates) [7]. These relationships are in-
herently complex, exhibiting non-linearity and interactions be-
tween all RGB inputs and all device-independent color coordi-
nates.

The general procedure for developing a display model in-
volves the following steps:

1. Measure a color dataset: This process includes the acqui-
sition of DAC RGB values, and their corresponding XYZ
or xyY values for model fitting.

2. Apply model fitting: Employ the dataset from step 1 to
fit a model that describes the relationship between RGB
inputs and XYZ/xyY outputs.

3. Measure a color test dataset: This dataset consists of
various RGB and XYZ/xyY coordinates.

4. Predict RGB values: Use the fitted model to predict the
RGB values that should theoretically generate the desired
XYZ/xyY values from the test dataset in step 3.

5. Measure actual XYZ/xyY: Measure the actual XYZ/xyY
values produced by the display using the predicted RGB
values from step 4.

6. Calculate visual error: Compare the desired outputs
(measured in step 3) with the obtained outputs (measured
in step 5) to determine the visual error between the pre-
dicted and actual colors.

Colorimeters (or more sophisticated devices like spectropho-
tometers) are typically employed to measure the XYZ output
values corresponding to the DACRGB vectors. Traditionally,

these measurements were acquired manually, leading to the de-
velopment of display characterization models based on physi-
cal principles. These models were designed to work effectively
with a limited number of color measurements, as the manual
acquisition process was time-consuming and laborious. This
limitation in data often resulted in a higher dependency of the
physical model related to the performance [8, 9].

One example of such physically-based models is the family
of Rochester Institute of Technology (RIT) models proposed in
[10, 2]. These models rely on a relatively simple linear trans-
formation to relate the input RGB values to the output XYZ tris-
timulus values. However, to account for some non-linearities,
they often incorporate pre-processing steps like power func-
tions or look-up tables [11], which can become cumbersome
and less effective for displays with highly non-linear behavior
[5]. Another example is the model described in [12, 13]. This
model uses measurements in the xyY color space and processes
them separately. The luminance component (Y) is typically pro-
cessed with a power function, while the chromaticity (xy) val-
ues are processed using linear interpolation between measured
data points. This approach can struggle to capture complex in-
teractions between RGB inputs that affect both luminance and
chromaticity.

In response to the limitations of traditional models, which as-
sume a simple, independent relationship between input voltage
and tristimulus values, researchers have explored more sophisti-
cated approaches. Authors in [14] proposed a two-stage model,
the ”S-shape model,” to address these limitations, particularly
for scenarios with limited training data. One such approach in-
volves using linear, non-linear, and hybrid search algorithms,
as proposed in [15]. These search algorithms avoid assump-
tions about the display’s internal model, potentially leading to
more efficient characterization of various display technologies.
Additionally, several other mathematical models have been de-
veloped to overcome these limitations. For instance, the model
proposed in [16] can independently assess the colorimetric in-
formation of red, green, and blue subpixels, potentially offering
advantages for displays with complex subpixel structures.

On the other hand, mathematical models also play a role
in display characterization. These models are highly data-
dependent. In the past, when measurements needed to be taken
manually, these models were not very practical. However, to-
day, we have programmable colorimeters and spectrophotome-
ters able to take tens of thousands of measurements in a short
period of time. This fact makes mathematical models more ap-
pealing today. But not only this, nowadays there is a huge va-
riety of mathematical models that can be used to approximate
any mathematical function or data with a high degree of accu-
racy and computational efficiency.

A classical example of mathematical model for display char-
acterization is the Pseudo-Inverse model [17], which seeks the
best linear transformation to capture the relationship between
RGB and XYZ color coordinates. This model considers an over-
determined system of equations created from measured data.
The optimal solution, minimizing the squared error, is achieved
using the Penrose pseudo-inverse method. This method was
used because even with few measurements limited computa-
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tional resources it could provide an acceptable performance.
Nowadays, other options of data-driven models exist and ma-
chine learning is playing an important role in building them.
Taking this into account, how well can machine learning ad-
dress the display characterization problem?

Therefore, the main aim of our paper is to investigate whether
applying different machine learning approaches (in particular,
some of them with interpretability features) can improve dis-
play characterization compared to using physical models with
limited datasets. The remaining parts of this paper are struc-
tured as follows. Section 2 introduces various machine learning
methods that used in this study. Section 3 describe the fitting
models. Section 4 presents the simulation and experimental re-
sults within a comparative framework. Finally, Section 5 con-
cludes the paper and outlines future research directions.

2. Machine learning models

A series of machine learning methods for regression were
considered to be applicable to our problem. Some of them
are classical methods, while others are black-box type meth-
ods. A few of them have an interesting and intrinsic ex-
plainability capability. The models were: Neural Network
(NN), Decision Tree (DT), K-Nearest Neighbors (KNN), Sup-
port Vector Regression (SVR), Random Forest Regression
(RFR), Fuzzy Modeling and Identification Toolbox (FMID),
Fuzzy MATLAB Toolbox using Mamdani (FMTB-MAM) and
Takagi-Sugeno (FMTB-TAK), Fispro Toolbox, Explainable
evolutionary multi-objective algorithm combining new linguis-
tic fuzzy grammar and a novel interpretable linear extension
(LINGeXplainable), Pseudo-Inverse (PI), Multivariate Polynomial
Regression (MVPR), and the RIT physical model.

Simple linear regression models the relationship between a
single independent variable and a dependent variable using a
linear function. Multivariate polynomial regression somehow
alleviate this restriction by incorporating higher-order polyno-
mial terms[18]. Multivariate polynomial regression (MVPR)
[19], is an extension of the simple linear regression model
[20].It fits a polynomial function with a series of input vari-
ables (or features). It is a powerful tool in mathematical mod-
eling and statistics for complex interactions between numerous
independent and dependent variables [21]. The coefficients of
the polynomial equation are typically found using optimization
techniques. Nevertheless, increasing the polynomial degree can
lead to over-fitting [22], where the model performs poorly on
unseen data due to capturing noise or random variations in the
training data. In multivariate polynomial regression, regulariza-
tion techniques like ridge regression [23] and lasso regression
[24] can help mitigate this drawback.

Neural networks have been used intensively for classifica-
tion as well as for prediction [25, 26]. For display characteriza-
tion, [1] proposes a trained model using a neural network (NN)
that predicts the RGB inputs required to achieve a desired color
expressed in either XYZ or xyY coordinates. However, these
methods are often categorized as ”black box” models, limiting
their interpretability.

This lack of interpretability can be a significant drawback
in many domains. To circumvent this limitation, we also pro-

pose in this paper the use of fuzzy inference systems (FIS), in-
troduced by [27, 28]. FIS have been shown to be an effective
and universal fitting function. If the relevant implication rules,
membership functions, inference operators, and defuzzification
method are appropriately chosen, any relationship (mapping)
between inputs and outputs may be described using a FIS up
to any degree of accuracy. A FIS is often created using pro-
fessional expertise. In such a case, it is necessary to have a
solution for the particular problem being addressed. In many
instances, however, ground truth data that connects the inputs
and outputs of the intended system exists instead of this expert
knowledge [29]. Therefore, it is also interesting to build a sys-
tem like this, just from datasets. Processing the collected data
into a model that can be related to a human way of thinking
can be achieved by building a fuzzy system [30] that provides a
transparent representation of a non-linear system, giving a lin-
guistic interpretation in the form of implication rules.

The rules in a FIS follow two types of (alternative) modelling
approaches: (a) The so-called Mamdani system [30], which is
more straightforward and intuitive. This form usually has lin-
guistic terms for both antecedents and consequents, such as:
IF X is low AND Y is medium, AND Z is high, THEN G is
medium, and (b) The Takagi-Sugeno system, which have lin-
guistic terms in the antecedents but functions in the consequents
so that it can be seen as a soft combination of different func-
tions, that are activated to a higher or lesser degree depending
on antecedent certainty and which provide the final outputs. So,
we aim to build a FIS using different toolboxes from a color
dataset in order to obtain interpretable models with a high per-
formance.

The Fuzzy Modeling and Identification Toolbox (FMID) [31]
is applied in our analysis. This toolbox allows for the creation
of a fuzzy logic rule system that determines the required RGB
coordinates to generate a desired color expressed in device-
independent color coordinates. We considered the FMID in this
study [32] and the results indicated suboptimal performance
when employing the xyY coordinates. Consequently, we opted
to use the XYZ coordinates to enhance the accuracy and relia-
bility of our model’s predictions.

The Fispro toolbox [33] was also considered. It is a widely
used and adaptable software tool for FIS. Fispro is a powerful
and comprehensive software suite offering a variety of features
to simplify FIS creation, analysis, and optimization. Its user-
friendly interface makes FIS development accessible even for
users without extensive programming experience. A key ad-
vantage of Fispro is its ability to automatically construct fuzzy
rule bases. Users can simply provide their data, and the tool-
box will derive optimal fuzzy rules. Additionally, Fispro offers
rule optimization tools that allow users to refine existing fuzzy
inference systems to achieve a specific desired performance.

In this context, the MATLAB Fuzzy Logic Toolbox [34, 35]
also provides a comprehensive environment for design, imple-
mentation, and training. It offers a rich set of features and
graphical tools for building and evaluating fuzzy systems. The
toolbox facilitates the construction and modification of fuzzy
systems through a user-friendly interface. This includes tools
for defining fuzzy rule sets, simulating system behavior, and vi-
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sualizing membership functions. Additionally, it supports var-
ious inference techniques, such as Mamdani and Sugeno, and
provides functionalities for evaluating and validating the de-
signed FIS.

A recent study [36] proposes a novel methodology that pri-
oritizes both model accuracy and interpretability. This ap-
proach combines two key elements. On the one hand, it
uses a New Linguistic Fuzzy Grammar. This grammar allows
the model to represent relationships between variables using
human-understandable terms like ”low,” ”medium,” and ”high.”
This significantly enhances the model interpretability. On the
other hand, the approach incorporates a Novel Interpretable
Linear Extension. This extension allows the consequent of the
rule to explain the specific variability of the rule through a sim-
ple linear relationship with only a single input variable.

Apart from models based on the theory of fuzzy sets, there
are other, well established and standard (classic) methods, like
the k-nearest neighbors algorithm (kNN), described by [37].
This is a clustering method, which groups data points based
on their distance, i. e., it identifies groups by considering the k
nearest neighbors of each point [38].

This method offers several advantages. First, it is known for
its simplicity and ease of use. kNN can handle a wide range
of inputs without requiring a training phase or complex model
construction. Additionally, kNN is interpretable, particularly
through visualizations like graphs, which can be helpful for un-
derstanding the groupings.

Decision trees [39] is another group of methods that have
shown its capabilities both for classification [40] and regression
tasks. As a non-parametric supervised learning algorithm, it
effectively handles complex and non-linear relationships.

Decision trees represent a collection of decisions and their
potential outcomes as a tree structure. Each internal node
denotes a choice or test on a feature, while each connected
branch represents one of that decision’s potential outcomes. Fi-
nally, each leaf node refers to a class label or a predicted value
[41]. They are interpretable as well [42, 43]. Their structure
closely resembles human decision-making processes, making
them easy to visualize and understand. Additionally, decision
trees are adaptable to various data types, handling both categor-
ical and numerical data effectively. They can efficiently manage
large datasets with high-dimensional features and they are com-
putationally efficient. Furthermore, decision trees are robust to
outliers and missing values because they rely on decision rules
rather than statistical assumptions. However, overfitting can be
an issue, particularly with overly complex trees [44]. Pruning
techniques, which simplify the tree by removing unnecessary
branches or nodes, can help mitigate this problem.

Despite the limitations of traditional methods, ensemble ap-
proaches like Random Forest Regression (RFR) [45] offer
promising solutions. They are built upon the strengths of de-
cision trees while addressing inherent weaknesses. Decision
trees, used for both regression and classification tasks, represent
decisions and their possible outcomes in a tree-like structure
[46]. In regression, the process starts at the root node, splitting
data based on variable values until reaching a leaf node that pro-
vides the prediction. While decision trees are straightforward

and interpretable, they can be prone to bias and overfitting [47].
This means they may capture noise in the training data, leading
to poor performance on unseen data.

Ensemble learning (the use of ensemble approaches), com-
bines predictions from several models, and then produces a
more accurate and robust output. The Random Forest algorithm
employs bootstrapping, where random subsets of the dataset are
sampled with replacement over numerous iterations. Each tree
in the forest is trained on a different subset of the data, address-
ing the issue of overfitting and enhancing the model’s robust-
ness. Additionally, Random Forests select a random subset of
features for each tree, unlike decision trees that consider all pos-
sible feature splits. This random feature selection ensures a low
correlation among the trees, further improving the ensemble’s
performance.

Support Vector Regression (SVR) [48] offers a powerful non-
linear regression method, which as been intensively used due to
its capability to deal with datasets with a low number of points
in high dimensions. SVR works in a two-step process. First,
it maps the input variables into a higher-dimensional feature
space. This allows the model to capture complex, non-linear
relationships within the data. Second, it finds a hyperplane
within this high-dimensional space that maximizes the mar-
gin – the distance between the hyperplane and the closest data
points. Crucially, SVR also minimizes prediction error during
this process. This focus on maximizing the margin enhances
the model’s ability to generalize, meaning it performs well on
new, unseen data [49].

A significant advantage of SVR is its ability to handle non-
linear relationships between the input and output variables.
This is achieved using a kernel function [50], which essentially
maps the data into a higher-dimensional space where a sim-
ple linear hyperplane can effectively model the data. Common
kernel functions include the polynomial kernel and the radial
basis function (RBF, also called Gaussian) kernel. The selec-
tion of the correct kernel function is critical, because it directly
impacts the model’s ability to capture the underlying patterns
in your data. Selecting an appropriate kernel can significantly
improve SVR’s performance, ensuring it can effectively handle
complex, non-linear relationships. SVR offers several other ad-
vantages [51]. It can be effective in high-dimensional spaces, is
memory efficient due to its reliance on support vectors, and is
flexible due to various kernel functions that enhance its adapt-
ability to different data types.

However, there are also challenges associated with SVR.
SVR models can be computationally expensive, requiring effi-
cient algorithms and optimization techniques for handling large
datasets and ensuring timely model training and prediction [52].

3. Fitting the models

We employed the three displays and colorimeter, as described
in 4, to create different datasets for model fitting and validation
for each display in the study. These datasets were constructed
by considering a mesh of equally spaced points within the RGB
color space (represented as a cube). In this space, RGB values
are integers ranging from 0 to 255.
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Specifically, for the training dataset, we divided each
DACRGB input into 22 levels, ranging from 0 to 252 with a
step size of 12 units. This resulted in all possible combinations
within the RGB cube, leading to a total of 10, 648 unique sam-
ples. The corresponding XYZ color values for these samples
were obtained using the colorimeter. Therefore, the training
dataset consists of 10, 648 samples, each containing both RGB
and XYZ data.

For the validation dataset, we defined another mesh with
points positioned between those of the training dataset. Here,
we employed 21 equally spaced RGB levels ranging from 6 to
246 with the same step size of 12 units. As with the training
dataset, all possible combinations were considered, resulting in
a total of 9, 261 samples with corresponding RGB − XYZ data.

3.1. Fuzzy modelling and identification toolbox (FMID)
We use the Fuzzy Modeling and Identification Toolbox

(FMID) [31] to create a fuzzy inference system (FIS) based on
the Takagi-Sugeno (TS) type. The FMID toolbox allows for dif-
ferent parameter settings depending on the problem [31]. After
feeding the data into the system, FMID uses fuzzy clustering,
with a user-defined degree of overlap, to divide the dataset into
a specific number of clusters. Since the FIS rules are created us-
ing the clustering results, the designer decides in advance how
many clusters to obtain and, therefore, how many local sub-
models of the fuzzy model there should be.

The Gustafson-Kessel (GK) algorithm [53] (extensively used
in clustering) is applied to determine the division and therefore
to define the membership functions of the antecedents. Then,
the activation functions of the consequents need to be fitted by
least squares minimization. There are different options of func-
tion types that can be tested, and the optimal option depends
heavily on the particular problem and data.

Once all of the FMID parameters have been determined and
set to initial parameters, the next step is to test the outcome
using a new, independent color dataset. The trained system
receives the validation dataset of desired colors expressed in
device-independent color coordinates and predicts what RGB
values need to be used to generate each of them. Here, we
can use the mean squared error between computed RGB and
corresponding RGB of the validation dataset (MS ERGB) as a
performance metric to describe the model’s level of accuracy,
which is useful for FMID parameter fitting. However, the final
visual error should be measured between colors displayed with
the computed RGB and desired colors in the validation dataset.

We study the three most important parameters, explained in
details in the appendix A, that have a significant impact on
MS ERGB performance: (1) the type of response functions in the
rules’ consequents, (2) the number of clusters (rules) in the sys-
tem, and (3) the overlapping parameter m between the clusters
membership functions (fuzziness in the system).

First, we analyze performance depending on the type of ac-
tivation function in the consequents. We considered linear,
parabolic, and square root functions. In the case of XYZ inputs,
the linear option is the best in terms of MS ERGB regardless of
the number of clusters for the three displays under investigation.

Second, we analyze the performance as a function of the
number of rules (clusters) that will be used in the model and

lastly, the overlapping degree between the clusters (m value in
FMID). For this, we varied the number of rules (Clusters) be-
tween 2 − 15 and the m parameter between 1.05 − 2.25.

A decision about the number of rules/clusters is more com-
plex. As we increase the number of clusters, the performance
of the system approaches optimal performance, but having so
many rules increases the model’s complexity. However, perfor-
mance does not drop significantly when reducing the number
of rules slightly, and this would result in a simpler model that
is easier to interpret. Table 1 summarizes the hyper-parameters
for the three displays under investigation.

3.2. The FisPro open source software

The study used the FisPro toolkit to train FIS. The FIS
was configured with three inputs and one output (resulting in
three separate systems) to generate RGB values, and trapezoidal
membership functions were used. Two rule generation methods
were employed: Fast Prototyping Algorithm (FBA) and Wang
& Mendel (WM) [54]. The system was optimized for 50 it-
erations. The Mean Absolute Error (MAE) [55] served as the
performance evaluation metric.

However, some challenges were encountered during the
training process. Since FisPro has limitations on the number
of outputs per system, we had to create separate systems for
each output channel (R, G, and B) to achieve the desired RGB
output. While the study successfully trained FIS using FisPro
for display characterization, the performance did not translate
to accurate RGB predictions. Consequently, the model was built
to a specific display (AS US VA27EHE) to assess its effective-
ness in that particular context.

3.3. Matlab fuzzy logic toolbox (FMTB)

A Fuzzy Matlab toolbox (FMTB) is a popular approach for
modelling complex systems where deriving precise mathemati-
cal models is difficult. In this experiment, a Mamdani Fuzzy
Inference System (FIS) using FMTB is employed to train a
model for display characterization. The model takes XYZ color
space values as inputs and predicts the corresponding RGB
color space values as outputs.

The experimental procedure involves several steps to ensure
an optimized and accurate FIS. First, the minimum and maxi-
mum ranges are extracted from the training data to define the
input and output variable ranges for the FIS. Then, various con-
figurations of membership functions (MFs) for the inputs are
tested, with the number of MFs ranging from 2 to 6. This al-
lows for a comprehensive exploration of the FIS performance
under different granularities of the fuzzy sets.

For each configuration, a Mamdani FIS is initialized and
tuned using particle swarm optimization (PSO) [56] to optimize
the system’s rules and parameters. The optimization process is
carried out in two stages: learning and tuning. During the learn-
ing stage, the FIS learns the rules from the training data. In the
tuning stage, a local optimization method called pattern search
[57] is used to fine-tune the parameters for better convergence
and accuracy. This two-tier optimization approach ensures that
the FIS not only captures the underlying patterns in the training
data but also generalizes well to unseen validation data.
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Table 1: Key Hyperparameters for Fuzzy Inference Models (FMIDs) of Three Display.

Parameters ASUS VA27EHE Eye Care LED MSI G274QPF-QD Monitor ASUS ROG Swift OLED PG27AQDM
Function type Linear Linear Linear

Clusters number 5 8 8
Overlapping params. 1.5 1.25 1.25

Table 2: Key Hyperparameters for the Fuzzy Matlab Toolbox with Two Types of FIS (Mamdani and Sugeno) for Three Displays.

LCD ASUS display

Method MSE Hyperparameters
MFS inputs MFs outputs Rules

Mamdani 1101.41 3 27 23
Sugeno 989.40 3 3 26

QLED MSI display

Method MSE Hyperparameters
MFS inputs MFs outputs Rules

Mamdani 749.51 3 27 24
Sugeno 722.01 3 3 27

OLED ASUS display

Method MSE Hyperparameters
MFS inputs MFs outputs Rules

Mamdani 706.61 2 8 7
Sugeno 786.79 2 2 4

The performance of each FIS configuration is evaluated using
Mean Squared Error (MSE) on both the training and validation
datasets. This provides a quantitative measure of how well the
model has learned to map XYZ inputs to RGB outputs.

Similar to the Mamdani approach, a Sugeno FIS is also inves-
tigated for the same task of display characterization, with XYZ
values as inputs and RGB values as outputs. The Sugeno FIS
experimental setup follows a similar procedure as the Mamdani
FIS. The input data ranges are extracted, and different configu-
rations of input MFs are tested.

Optimization of the Sugeno FIS is also performed using PSO,
followed by the local optimization method. The tuning pro-
cess involves both learning the rules and fine-tuning the pa-
rameters to achieve minimal MSE on the training and valida-
tion datasets. The use of PSO helps in efficiently searching the
parameter space, while local optimization ensures fine adjust-
ments for better performance.

The hyperparameter settings for both Mamdani and Sugeno
FIS types are illustrated in Table 2.

3.4. Random Forest Regression (RFR)

This study investigates the use of Random Forest Regression
(RFR) to predict optimal RGB values for the displays under
investigation. We developed separate models for red, green,
and blue color channels. This approach allows us to analyze the
performance of each model on a specific color and subsequently
combine them for the best overall result.

Hyperparameter tuning is crucial for optimal RFR model per-
formance. A key hyperparameter is the number of trees in the
forest (n-estimators). While increasing the number of trees gen-
erally improves accuracy by averaging individual tree errors,
it also increases computational cost. We explored a range of
values from 10 to 1, 000 for this parameter to find the optimal
balance between accuracy and efficiency.

Another important parameter is the maximum depth of each
tree (max-depth), which controls its complexity. Deeper trees

can capture intricate data patterns but are more prone to over-
fitting. To mitigate this risk, we explored a range of values
between 10 and 100 for max-depth.

Balancing model complexity and efficiency involves tuning
additional hyperparameters: the minimum number of samples
required to split an internal node (min-samples-split) and the
minimum number required for a leaf node (min-samples-leaf).
Lower values for these parameters can improve the model’s fit
to the training data, but they also increase the risk of overfitting.
Conversely, higher values lead to more generalized trees that
might underfit the data. We explored the parameter space of
min-samples-split (2 to 10) and min-samples-leaf (1 to 10) to
find the optimal settings.

Finding the optimal balance for all these hyperparameters is
achieved through a gradient descent-based optimization func-
tion like custom gradient boosting [58]. This function iter-
atively adjusts the hyperparameters to minimize the model’s
mean squared error (MSE), guiding it towards the best configu-
ration.

Custom gradient boosting works by randomly selecting hy-
perparameter values in each iteration, training the model, and
evaluating its performance based on MSE. The difference in
MSE between iterations, known as the gradient, indicates the
direction and magnitude for improvement. If the gradient falls
below a predefined tolerance, the process stops, suggesting we
have reached near-optimal hyperparameters. This iterative ap-
proach explores a vast space of possible hyperparameter com-
binations, significantly increasing the likelihood of finding an
optimal configuration that minimizes MSE. Efficiently tuning
these key hyperparameters allows the RFR model to achieve
a robust balance between complexity and computational effi-
ciency, resulting in more accurate and reliable predictions. The
summary of the hyperparameter settings of the displays under
study is in Table 3.
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Table 3: Key Hyperparameters for Random Forest Regressor RFR of Three Displays.

LCD ASUS display

Colour MSE Hyperparameters
n estimators max depth min samples split min samples leaf

R 140,24 29 66 2 2
G 15,97 942 70 5 2
B 28,27 49 28 6 1

QLED MSI display

Colour MSE Hyperparameters
n estimators max depth min samples split min samples leaf

R 27,85 99 18 3 1
G 10,31 80 60 4 1
B 29,56 88 16 7 5

OLED ASUS display

Colour MSE Hyperparameters
n estimators max depth min samples split min samples leaf

R 65,54 91 91 5 3
G 20,77 44 14 4 2
B 31,34 89 78 5 2

3.5. Support Vector Regression (SVR)

Support Vector Regression (SVR) is employed to identify a
function that closely approximates the relationship between in-
put XYZ variables and a continuous target variable RGB, mini-
mizing prediction errors. The key hyperparameters in SVR are
the regularization coefficient (C), epsilon (ϵ), and the kernel
type. The regularization coefficient (C) manages the trade-off
between a large margin and classification error on the training
data. Higher values of C aim to classify all training points cor-
rectly, which can lead to overfitting. Conversely, lower values
allow for a larger margin with more classification errors, po-
tentially improving generalization. Typically, the range for C
spans from 1 to 15. The epsilon (ϵ) parameter defines the mar-
gin of tolerance in the SVR loss function. A higher ϵ value
makes the model more tolerant to errors within the margin,
while a lower value forces the model to fit more closely to the
training data. The range for ϵ is usually between 0.1 and 1.

The choice of kernel is crucial as it directly impacts the
model’s ability to capture underlying data patterns. Common
kernel functions include the linear kernel, polynomial kernel,
and radial basis function (RBF) kernel. The linear kernel is suit-
able for linearly separable data, while the polynomial and RBF
kernels handle non-linear relationships effectively. The RBF
kernel, in particular, maps the data into a higher-dimensional
space, enabling the model to capture intricate patterns. The
flexibility of the kernel function allows SVR to adapt to various
data types, making it a versatile tool for regression tasks.

Tuning these hyperparameters is essential to balance model
complexity and computational efficiency. For instance, a high
value of C may lead to overfitting by capturing noise in the
training data, while a low value might underfit, failing to cap-
ture essential patterns. Similarly, selecting an appropriate value
for ϵ is critical; too high a value might ignore relevant data
points, whereas too low a value may make the model overly
sensitive to noise. Choosing the right kernel function and its
parameters can significantly enhance the model’s performance,
ensuring it effectively handles both linear and non-linear rela-
tionships. The hyperparameter settings for the displays being
studied are summarized in Table 4.

Table 4: Key Hyperparameters for Support Vector Regression SVR of Three
Displays.

LCD ASUS display

Colour MSE Hyperparameters
C Epsilon Kernel

R 92.84 14.895 0.795 RBF
G 26.02 14.167 0.723 RBF
B 9.69 13.962 0.922 RBF

QLED MSI display

Colour MSE Hyperparameters
C Epsilon Kernel

R 27.7 14.911 0.177 RBF
G 19 14.671 0.776 RBF
B 4.19 14.636 0.987 RBF

OLED ASUS display

Colour MSE Hyperparameters
C Epsilon Kernel

R 114.95 14.794 0.992 RBF
G 73.83 14.933 0.657 RBF
B 31.651 12.627 0.695 RBF

3.6. Mix model

In this model, we leverage an ensemble approach to enhance
the prediction accuracy of RGB values for the displays types in
this study. This method combines the strengths of two estab-
lished regression techniques: Random Forest Regressor (RFR)
and Support Vector Regressor (SVR).

Tables 3 and 4 present the Mean Squared Error (MSE) values
for each RGB component (red, green, and blue) across three
display types: ASUS LCD, MSI QLED, and ASUS OLED.

In the ASUS LCD display, SVR achieves the lowest MS E
for both the red (R) and blue (B) components, demonstrating its
efficacy in accurately predicting these color channels. However,
for the green (G) component, RFR exhibits the lowest MS E, in-
dicating its suitability in this specific scenario. The MSI QLED
display, we obtain the mix approach. Similar to the LCD dis-
play, SVR demonstrates superior performance in predicting the
red (R) and blue (B) components. Conversely, RFR delivers the
lowest MSE for the green (G) component.

While the proposed ensemble approach effectively combines
RFR and SVR for LCD and QLED displays, it’s not directly

7



Khleef Almutairi et al. Displays (2024)

applicable to the ASUS OLED display due to technical limita-
tions. Since RFR surpasses SVR in terms of overall MS E for
the OLED display, employing RFR as the sole prediction model
might be the most suitable strategy.

3.7. Multivariate Polynomial Regression (MVPR)

This section investigates the application of polynomial re-
gression for modeling the relationship between spatial coor-
dinates (X,Y,Z) and their corresponding RGB color values in
digital environments. Polynomial regression offers a versatile
approach to capture non-linear relationships between variables,
making it suitable for the complex and continuous nature of the
RGB color space.

The implementation process involved polynomial features,
transformation, and model evaluation. Polynomial features
were generated using PolynomialFeatures, creating new matri-
ces containing all polynomial combinations of the features up
to a specified degree.

A crucial step was determining the optimal polynomial de-
gree. This involved fitting polynomial regression models of
varying degrees and evaluating their performance on both train-
ing and validation datasets using Mean Squared Error (MSE)
as the metric. The elbow method [59] was employed to iden-
tify the optimal degree by plotting the MSE against different
degrees and selecting the point where the MSE decrease slows
down. This approach balances model complexity with perfor-
mance, avoiding underfitting and overfitting.

The evaluation process involved data scaling, polynomial
transformation for degrees ranging from 1 to 17, model fitting
and prediction on training and validation sets, and error calcula-
tion using MSE. The elbow method revealed that a polynomial
degree of around 6 offered the best balance for each RGB com-
ponent (R,G, B). The final model with this degree was assessed
using MSE on the training and validation datasets.

The performance of the Multivariate Polynomial Regression
(MVPR) model varied across different displays. The ASUS-
VA27E achieved an MSE of 8.48 with polynomial degrees of 5,
6, and 7 for R, G, and B components, respectively. The QLED
MSI display achieved the best results with a significantly lower
MSE of 1.82 using a degree of 6 for all components. In contrast,
the ASUS OLED Gaming display exhibited higher prediction
errors, reflected in an MSE of 16.84 with a degree of 7 for all
components.

3.8. Decision Trees (DT)

A grid search with cross-validation was employed to identify
the optimal hyperparameters for the decision tree model. This
involved systematically evaluating various combinations of pa-
rameters, including the splitting criterion (gini or entropy) and
maximum tree depth (3 to 21), while monitoring performance
through cross-validation. The data preparation stage involved
scaling the features to ensure a consistent range. Following
hyperparameter selection, separate decision tree models were
trained for each RGB component (R, G, B) using the identified
optimal parameters. Finally, model performance was evaluated
on both the training and test datasets, with Mean Squared Error
(MSE) used as the evaluation metric.

Decision trees exhibited varying levels of success in predict-
ing RGB values across the three displays. The ASUS-VA27E
display yielded the poorest performance, with a high MSE of
217.30, indicating significant prediction inaccuracies. Con-
versely, the QLED MSI display demonstrated better results with
a considerably lower MSE of 73.48, suggesting the model’s
ability to effectively capture the color characteristics of this
specific display. The ASUS OLED Gaming display achieved
a moderate performance with an MSE of 112.77, surpassing
the VA27E but not reaching the level of the QLED MSI. These
findings highlight the influence of display-specific features on
model performance and emphasize the necessity for tailored op-
timization to achieve accurate color predictions.

A closer examination revealed mixed performance across in-
dividual RGB components. The model struggled with the red
channel (R), evidenced by a high MSE (202.28) for the OLED
display. This could be attributed to factors such as over-fitting
or the inherent characteristics of the data for the R component
being less suited for the decision tree’s splitting criteria. Con-
versely, the model performed well for the green (G) and blue
(B) components, achieving low MSEs of 41.78 and 36.00 re-
spectively for the OLED display. This indicates the decision
tree’s effectiveness in capturing underlying patterns within the
data for these channels, making it a reliable predictor for both
green and blue.

3.9. K-Nearest Neighbors (KNN)

KNN is a non-parametric machine learning algorithm well-
suited for both classification and regression tasks. Its core
principle involves assigning the average value of the k-nearest
neighbors in the feature space to the target point. In this con-
text, the feature space represents the spatial coordinates, and the
target values are the RGB values.

The k-NN model was implemented using the scikit-learn li-
brary [60]. A crucial step involved determining the optimal
number of neighbors (k) that minimizes prediction errors. This
was achieved by evaluating the model’s performance with dif-
ferent k values and analyzing the Mean Squared Error (MSE)
for each RGB component (Red, Green, Blue).

The results revealed that the optimal number of neighbors
varied depending on the display. For the QLED MSI display,
the model achieved the best performance with 19 neighbors, re-
sulting in MSE values of 123.45 (R), 90.45 (G), and 40.82 (B).
This indicates a reasonable prediction accuracy, with the low-
est MSE observed for the blue component. The ASUS-VA27E
display presented a higher overall MSE (93.19), suggesting a
greater challenge for the KNN model in predicting RGB values
accurately. Interestingly, the ASUS OLED Gaming Display ex-
hibited the highest MSE (144.01), implying a significant diffi-
culty in capturing the color characteristics of this display using
KNN.

3.10. Neural Network (NN)

A standard feed-forward neural network architecture was
employed for predicting RGB values from XYZ color coordi-
nates. The network comprised: (a) An input layer with three
neurons corresponding to the X, Y , and Z coordinates; (b) Two
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hidden layers followed, each containing 256 and 64 neurons,
respectively, with ReLU activation functions, and (c) The fi-
nal output layer, formed by three neurons, representing the pre-
dicted red, green, and blue values, also utilizing ReLU activa-
tion.

During the training process, the Mean Squared Error (MSE)
served as the loss function, measuring the discrepancy be-
tween the predicted and actual RGB values. The Adam opti-
mizer [61], with a learning rate of 0.00005, facilitated gradi-
ent descent for efficient model training. Determining optimal
hyperpar-ameters involved experimentation and analysis of the
MSE curve. For the XYZ domain, the learning rate remained
constant at 5.0×10−6, while the number of epochs varied across
displays (ranging from 300 to 800) and the batch size was set
to 64 for all displays.

The neural network exhibited varying performance in pre-
dicting RGB values from XYZ coordinates for the different dis-
plays. The ASUS-OLED achieved the most favorable outcome
with the lowest MSE recorded during validation (3.79). The
QLED MSI display followed closely with a lower MSE (1.08)
compared to the ASUS-VA27E display (5.93).

3.11. Explainable evolutionary multi-objective algorithm com-
bining new linguistic fuzzy grammar and a novel inter-
pretable linear extension (LINGeXplainable)

This method is a two-stage tree-based hybrid evolutionary
multi-objective algorithm [36] designed to obtain interpretable
fuzzy rules for regression problems. It features a new extension
of the classic fuzzy linguistic grammar based on the Composed
Fuzzy Linguistic Term Sets (CFLTSs) and a novel interpretable
linear extensión, both proposed in [36]. This effectively reduces
the number of rules and maximizes the semantic interpretabil-
ity using GM3M [62] (Geometric Mean of 3 Metrics, which
measures semantic interpretability at the database level) and
RMI [62] (Rule Meaning Index, which measures semantic in-
terpretability at the rulebase level). The method also minimizes
the Mean Square Error (MSE) while maintaining rule length
within reasonable bounds.

It is based on two stages: In the first stage, the algorithm em-
ploys an embedded multi-objective evolutionary learning pro-
cess to derive initial linguistic partitions and rules. It aims
to minimize the number of rules and the error through a fast
linguistic tree-based rule learning technique that extends the
M5-prime method; In the second stage, an advanced multi-
objective evolutionary algorithm refines the solutions by fine-
tuning membership functions and selecting rules to further min-
imize the number of rules, enhance the interpretability (GM3M
and RMI improvements) and reduce errors.

This method obtains interpretable and quite accurate results
and is capable of automatically learning its parameters. It au-
tomatically determines the appropriate number of membership
functions, variables, and rules, enabling the creation of simple
models with very few rules and semantically well formed mem-
bership functions.

4. Results and discussion

In order to correctly characterize how display models work
and the colour reproduction capability each of these displays,
the reproduced colour has to be objectively measured. In our
case, an X-rite i1Display Pro Plus colorimeter was used. Three
displays were used in this study:

• ASUS VA27EHE Eye Care LED: This 27-inch display
features a resolution of 1920 × 1080 pixels.

• MSI G274QPF-QD Monitor: This 27-inch monitor is
based on WQHD technology, and its resolution is 2560 ×
1440 pixels.

• ASUS ROG Swift OLED PG27AQDM: This 27-inch
display features a resolution of 2560 × 1440 pixels and
is based on OLED technology.

Table 5 summarizes the key image quality and performance
specifications of the three displays. These include: (a) Display
panel technology, (b) Resolution, (c) Refresh rate, (d) Response
time, (e) Color gamut, (f) Contrast ratio, (g) Viewing angle, and
(h) Brightness.

Model performance was assessed using the ∆E00 visual error
[63, 64] between the desired colors of the validation dataset
and the displayed colors using RGB inputs computed by each
method. Results for the models considered in section 3, are
summarized in Tables 6 - 8.

Tables 6, 7, and 8 present the performance metrics for each
model and for each display, including: (a) The mean square
error between computed RGB values and original RGB values
used in the measurement of the validation dataset (MS ERGB),
(b) The mean of the visual error (∆E00), (c) The standard devia-
tion (STD) of ∆E00, and (d)-(f) The number of colors for which
the model produces a correct display value, with a ∆E00 ≤ 1, or
it makes a small mistake, i. e., 1 < ∆E00 ≤ 2, and the number
of colors for which the error would be noticeable to a typical
observer, i. e., ∆E00 > 2.

Table 6 presents the results for the ASUS VA27EHE Eye
Care LED display. The RIT (physical) model shows the best
performance, followed by NNXYZ with a performance that is
close to that shown by FMID using 5 clusters, and then MVPR.
For these models, the average ∆E00 value is less than one. How-
ever, the difference between these models lies in the number of
colors for which the model makes a clear error. Furthermore, it
is notable that the RIT model has no colors with ∆E00 greater
than 2, highlighting its precision in color reproduction.

In contrast, FMID and NNXYZ , while performing well over-
all, produce 132 and 154 colors with ∆E00 > 2, respectively.
This suggests that the RIT model physical assumptions (i.e.,
constant chromaticity of the primaries, as well as an additive
color generation model) hold well for this display, explaining
its superior performance. Machine learning methods such as
FMID, NNXYZ , and MVPR also perform well for many col-
ors, but other models with an average ∆E00 > 1 fall within the
human discrimination threshold, displaying a larger number of
wrongly rendered colors. FisPro and FMTB exhibit the highest
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Table 5: Key specifications for three display monitors under invistigation: ASUS VA27EHE, MSI G274QPF-QD, and ASUS PG27AQDM. This table highlights
the key features relevant to image quality and performance.

Feature ASUS VA27EHE Eye Care LED MSI G274QPF-QD Monitor ASUS ROG Swift OLED PG27AQDM
Display Type LED QLED OLED

Panel Size (inches) 27 27 26.5
Resolution 1920 × 1080 (Full HD) 2560 × 1440 (WQHD) 2560 × 1440 (WQHD)

Refresh Rate (Hz) 75 Up to 165 240
Response Time (ms) 5 (GTG) 1 (MPRT) 0.03 (GTG)

Color Gamut 100% sRGB 95% DCI-P3 (estimated) 99% DCI-P3
Contrast Ratio 1000:1 1000:1 (typical) 1,500,000:1

Viewing Angles (degrees) 178 (H/V) 178 (H/V) 178 (H/V)
Brightness (cd/m²) 250 (typical) 300 (typical), 400 (HDR peak) 450 (typical), 1000 (HDR peak)

error, with ∆E00 > 2, and therefore a bigger number of color er-
rors easily noticeable to humans, and therefore making FisPro
unsuitable for accurate color display applications.

Table 7 shows the corresponding analysis of the QLED MSI
display. RIT emerges as the best-performing method with the
lowest mean ∆E00 of 0.30. It also has the fewest colors with
a ∆E00 greater than 2 demonstrating its accuracy and consis-
tency. This is closely followed by FMIDXYZ with 8 clusters,
which has a mean ∆E00 of 0.40, showing competitive perfor-
mance. FMIDXYZ manages to keep the number of colors with
∆E00 above 2 to a minimal 17. In contrast, the machine learn-
ing methods such as NNXYZ and MVPR also perform well but
with slightly higher error metrics. NNXYZ has a mean ∆E00 of
0.60, while MVPR shows a mean ∆E00 of 0.57. Although these
models exhibit more colors with ∆E00 greater than 2 compared
to RIT and FMID, they still maintain a relatively low count,
making them viable alternatives for accurate color rendering.

On the other hand, models like FMTB-MAM and FMTB-
TAK show significantly higher error values, with mean ∆E00
values of 10.25 and 10.12, respectively. These models also ex-
hibit high MS ERGB values and a large number of colors with
∆E00 > 2, indicating substantial perceptual errors. Similarly,
models like DT and LINGeXplainablealso demonstrate poor per-
formance, with mean ∆E00 values of 2.93 and 3.92, respec-
tively.

The results for the third display (ASUS ROG Swift OLED
PG27AQDM) appear in Table 8. Among the models tested,
the neural network model NNXYZ demonstrated the best over-
all performance with the lowest mean ∆E00 of 1.23. It also
had the highest number of colors within the non-perceptually
distinguishable error range (∆E00 ≤ 1), for 3824 colors. How-
ever, it still produced 1251 colors with a ∆E00 > 2, indicating
noticeable errors to human observers. Following closely, the
FMIDXYZ with 8 clusters had a mean ∆E00 of 1.37, slightly
higher than NNXYZ , but it performed well overall with 3105 col-
ors within the non-perceptually distinguishable range and 1644
colors with significant errors.

RIT showed competitive performance, with a mean ∆E00 of
1.48. However, it had fewer colors in the non-perceptually dis-
tinguishable range compared to NNXYZ and FMID, with 2027
colors, and a higher number of significant errors (1969 colors).
This indicates that while RIT maintains good performance,
its accuracy is outperformed by the top two machine learn-
ing models. On the other hand, models such as FMTB-MAM
and FMTB-TAK exhibited the poorest performance, with mean

∆E00 values of 12.56 and 11.13, respectively. These mod-
els also produced the most significant number of colors with
∆E00 > 2, making their color errors highly visible. Models like
DT, KNN, and LINGeXplainablealso performed poorly, with high
mean ∆E00 values and substantial numbers of significant errors.

Overall, RIT, NNXYZ , and FMID showed superior perfor-
mance in terms of ∆E00 for the three displays under analysis,
achieving high accuracy and consistency in color rendering.
These models stood out for their ability to reproduce colors
with minimal perceptual errors, ensuring that the displayed col-
ors closely matched the desired colors. The RIT model showed
remarkable performance due to its assumptions about constant
chromaticity and additive color generation, which held true for
many colors on the displays tested. The NNXYZ model, despite
being a neural network often referred to as a ”black box” due
to its complex and opaque internal processes, exhibited excep-
tional accuracy. It managed to produce the lowest mean ∆E00.

FMID, not only performed competitively in terms of the
∆E00 value, but it also has additional advantages in terms of
interpretability. Unlike the NNXYZ model, FMID allows for
a clearer understanding of the steps involved in the modeling
process. This interpretability can be crucial for diagnostic and
optimization purposes, since it allows to understand how spe-
cific decisions are made within the model. This transparency is
a key advantage, making FMID a valuable tool not just for its
performance but also for its ability to provide insights into the
modeling process itself.

Figures 1, 2, and 3 show the ∆E00 visual error metrics in
terms of the luminance Y and chrominance xy values. These fig-
ures offer a visual representation of the color accuracy achieved
by FMID, RIT, NNXYZ , and MVPR models.

Figure 1 shows the analysis corresponding to the ASUS
VA27EHE Eye Care LED display. In this case, RIT shows vary-
ing performance depending on the luminance level (Y). Specif-
ically, the RIT model performs worse as Y increases, indicating
lower accuracy for brighter colors. Conversely, it performs bet-
ter for lower Y values, suggesting higher accuracy for darker
colors. The NNXYZ model also struggles with increasing Y val-
ues, particularly for bright greenish and yellowish colors, where
its performance deteriorates significantly. This indicates a lim-
itation in handling high luminance levels, which is critical for
accurate color rendering in brighter scenes. The FMID model
demonstrates a more balanced performance across different lu-
minance levels, with errors remaining low at both ends of the
luminance spectrum. This suggest, FMID works worse for cer-
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tain chromaticities like those close to cyan, grey or dark red.
Lastly, the MVPR model shows higher error in both dark and
bright colors, with 32 data points exceeding 5 visual error units
and better performance for medium luminances.

In terms of the chromaticity coordinates (xy), both FMID and
NNXYZ exhibit non-negligible errors for a small number of col-
ors, particularly dark greenish and bluish colors. Despite these
errors, they still show acceptable performance. The RIT model,
however, exhibits excellent performance across all colors in the
xy space, indicating its superior ability to accurately render col-
ors regardless of their chromaticity.

In the analysis of the QLED MSI display shown in Figure 2,
RIT generally exhibits strong performance across various lumi-
nance levels, maintaining accuracy except for higher errors ob-
served in darker colors. This suggests that while the RIT model
can handle a wide range of luminance levels effectively, it en-
counters challenges with lower luminance as well as and mid
luminance yelows and bright greens. The error of the FMID
model decreases as the luminance (Y) increases, indicating that
FMID struggles to render colors accurately at lower luminance
levels. The NNXYZ model presents a lower error at high lumi-
nance levels and variable error in lower luminances depending
on chromaticity: it seems worse for light yellows and cyans
and some very bright reds. This suggests that NNXYZ struggles
with both very dark color and certain chromaticities, making it
less reliable across the full spectrum of luminance. Similarly,
MVPR exhibits higher errors at lower luminance and medium
luminance red, oranges, yellows and cyans.

Examining Figure 3 for the ASUS ROG Swift OLED
PG27AQDM display, it shows that RIT exhibits increasing er-
rors as the luminance (Y) increases, particularly in greenish and
yellowish colors but also high error for dark blue colors. This
trend indicates that the RIT model struggles with accurately
rendering brighter hues within these specific color ranges. Con-
versely, the NNXYZ and FMID models display a different error
distribution pattern. Both models exhibit peak errors in dark
reddish and bluish colors, indicating a significant challenge
in accurately rendering these hues. Despite this, both models
show suitable performance for brighter colors, maintaining a
higher degree of accuracy at elevated luminance levels com-
pared to the RIT model. While the MVPR model generally
performs worse overall, it shows particularly high errors in ren-
dering black, dark green, and dark red colors

5. Conclusions

This study investigated the efficacy of various characteriza-
tion models for accurate color reproduction (RGB), for three
commercially available displays, with different properties: (1)
ASUS LCD VA27EHE, (2) MSI QLED G274QPF-QD, and
(3) ASUS OLED PG27AQDM. We aimed to assess the per-
formance of these models by computing the visual error metric
∆E00 between the desired colors of a validation dataset, and the
displayed colors using RGB inputs computed by each method.
To measure the colors accurately and creating the training and
validation datasets, we used an X-rite i1Display Pro Plus col-
orimeter. Our goal was to determine which models best repro-

duce accurate colors in RGB, ensuring minimal perceptual er-
rors.

Overall, the RIT, NNXYZ , and FMID models demonstrated
superior performance in terms of ∆E00 across all displays,
achieving high accuracy and consistency in color rendering.
The traditional physical model, RIT, performed particularly
well for the LCD displays due to its assumptions aligning with
their operating principles. Specifically, the RIT model’s effec-
tiveness can be attributed to its reliance on the constant chro-
maticity of primaries and additive color generation models,
which are well-suited for LCD technology. However, its ef-
fectiveness diminished for the OLED display, highlighting the
limitations of relying solely on physical models for diverse dis-
play technologies.

Conversely, the NNXYZ neural network exhibited an excel-
lent accuracy, particularly for the OLED display. Its perfor-
mance was marked by the lowest mean ∆E00 values, indicating
superior color reproduction. However, its lack of interpretabil-
ity makes it a ”black box” model, hindering insights into its
decision-making process. While such a model can be effective
for specific applications where accuracy is paramount, it offers
limited value in understanding and optimizing display perfor-
mance. This opacity can be a significant drawback when diag-
nosing issues or attempting to fine-tune the model for improved
results.

The Fuzzy Modeling and Identification (FMID) method
emerged as a compelling alternative. It demonstrated compet-
itive performance across all displays, rivaling the accuracy of
the other two models. More importantly, FMID offers valuable
interpretability. This transparency allows for a deeper under-
standing of the model’s decision-making process, aiding in di-
agnostics and optimization efforts. By analyzing the model’s
reasoning, we can identify potential issues and refine the char-
acterization process for enhanced color accuracy. The inter-
pretability of FMID is particularly advantageous in practical ap-
plications where understanding the cause of errors and adjust-
ing parameters can lead to significant improvements in perfor-
mance. Given the advantages of FMID and its interpretability,
we have included detailed information about the learned model
in the Appendix A for the LCD display model only as an illus-
trative example. While we focus on the interpreting the LCD
model here, a simillar analysis can be conducted for QLED and
OLED displays using the information provided in the other ta-
bles and figures.

This study highlights the strengths of these models and offers
insights into their applicability for different displays, contribut-
ing to advancements in color science and technology. The find-
ings suggest that a hybrid approach, leveraging the strengths of
both physical and machine learning models, could be the most
effective strategy for achieving optimal color accuracy across
various display technologies. The RIT model’s robust perfor-
mance on LCDs, the NNXYZ model’s exceptional accuracy on
OLEDs, and the FMID model’s balance of accuracy and in-
terpretability collectively provide a comprehensive toolkit for
addressing diverse color reproduction challenges.

Future work could explore integrating the interpretability
of FMID with the high accuracy of neural networks, poten-
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Table 6: The analysis table for LCD ASUS display of MS ERGB, mean of the ∆E00 visual error, visual error standard deviation (STD), and number of points bounded
by error equal to 1 (non perceptually distinguishable) and 2. The best result is highlighted in red, and the second-best result is highlighted in blue.

Method MS ERGB Mean ∆E00 STD ∆E00 ≤ 1 1 < ∆E00 ≤ 2 ∆E00 > 2
FMIDXYZ 5 Clusters 6.27 0.69 0.40 7822.00 1307.00 132.00

NNXYZ 6.01 0.66 0.45 7606.00 1501.00 154.00
PI 36.86 1.58 0.77 2163.00 4782.00 2316.00

RIT 10.35 0.58 0.27 8588.00 673.00 0.00
DT 219.57 3.55 2.38 463.00 2264.00 6534.00

FMTB-MAM 1101.29 11.77 7.54 84.00 169.00 9008.00
FMTB-TAK 989.50 11.32 6.55 21.00 149.00 9091.00

KNN 104.81 2.98 1.95 415.00 2788.00 6058.00
MVPR 8.87 0.74 0.77 7416.00 1410.00 435.00
SVR 42.84 1.42 1.10 3775.00 3864.00 1622.00
RFR 60.81 1.93 1.25 2180.00 3592.00 3489.00
Mix1 39.58 1.51 1.24 3398.00 3793.00 2070.00
FisPro 2815.35 19.71 10.10 0.00 5.00 9256.00

LINGeXplainable 159.75 3.68 2.78 993.00 1694.00 6574.0

Table 7: The analysis table for Qled MSI display of MS ERGB, mean of the ∆E00 visual error, visual error standard deviation (STD), and number of points bounded
by error equal to 1 (non perceptually distinguishable) and 2. The best result is highlighted in red, and the second-best result is highlighted in blue.

Method MS ERGB Mean ∆E00 STD ∆E00 ≤ 1 1 < ∆E00 ≤ 2 ∆E00 > 2
FMIDXYZ 8 Clusters 0.91 0.40 0.27 8973.00 271.00 17.00

NNXYZ 1.16 0.60 0.35 8296.00 920.00 45.00
PI 20.63 1.48 0.80 2760.00 4519.00 1982.00

RIT 1.52 0.30 0.16 9246.00 14.00 1.00
DT 73.48 2.93 1.83 211.00 3406.00 5644.00

FMTB-MAM 749.57 10.25 7.04 38.00 180.00 9043.00
FMTB-TAK 722.07 10.12 5.60 7.00 97.00 9157.00

KNN 53.50 2.64 1.64 124.00 4162.00 4975.00
MVPR 1.82 0.57 0.35 8115.00 1114.00 32.00
SVR 23.59 1.14 1.05 5616.00 2466.00 1179.00
RFR 26.15 1.79 1.02 1572.00 4984.00 2705.00
Mix2 19.23 1.32 0.97 4198.00 3560.00 1503.00

LINGeXplainable 124.45 3.92 2.89 744.00 1763.00 6754.00

Table 8: The analysis table for OLED ASUS display of MS ERGB, mean of the ∆E00 visual error, visual error standard deviation (STD), and number of points
bounded by error equal to 1 (non perceptually distinguishable) and 2.

Method MS ERGB Mean ∆E00 STD ∆E00 ≤ 1 1 < ∆E00 ≤ 2 ∆E00 > 2
FMIDXYZ 8 Cluster 6.77 1.37 0.71 3105.00 4512.00 1644.00

NNXYZ 4.33 1.23 0.65 3824.00 4186.00 1251.00
PI 67.63 2.42 1.15 986.00 2589.00 5686.00

RIT 24.10 1.48 0.58 2027.00 5265.00 1969.00
DT 116.52 3.45 2.03 463.00 1601.00 7197.00

FMTB-MAM 706.74 12.56 8.41 10.00 93.00 9158.00
FMTB-TAK 786.93 11.13 7.14 42.00 152.00 9067.00

KNN 144.01 3.35 1.83 196.00 1752.00 7313.00
MVPR 16.84 1.70 1.00 2328.00 4049.00 2884.00
SVR 73.58 2.11 1.47 2128.00 3260.00 3873.00
RFR 39.36 2.33 1.13 630.00 3475.00 5156.00

LINGeXplainable 201.56 5.29 3.23 205.00 653.00 8403.00

tially developing new models that combine the best of both ap-
proaches. Overall, this study provides a foundation for ongoing
research and development in the field of color science, with the
potential to improve the quality and accuracy of digital displays
in various applications.
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(a) ∆E00 vs. Y . FMIDXYZ 5 clusters (∆E00 > 5 are Zero) (b) ∆E00 vs. xy. FMIDXYZ 5 clusters

(c) ∆E00 vs. Y . RIT (∆E00 > 5 are Zero) (d) ∆E00 vs. xy. RIT

(e) ∆E00 vs. Y . NNXYZ (∆E00 > 5 are one) (f) ∆E00 vs. xy. NNXYZ

(g) ∆E00 vs. Y . MVPR (∆E00 > 5 are 32 in green and
dark greenish colors

(h) ∆E00 vs. xy. MVPR

Fig. 1: ∆E00 visual error analysis of ASUS LCD display for four trained models (FMIDXYZ with 5 clusters, RIT model, NNXYZ , and MVPR). First column: ∆E00
versus Y luminance values of desired colors; Second column: ∆E00 versus xy chrominance values of desired colors.
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(a) ∆E00 vs. Y . FMIDXYZ 8 clusters (∆E00 > 5 are Zero) (b) ∆E00 vs. xy. FMIDXYZ 8 clusters

(c) ∆E00 vs. Y . RIT (∆E00 > 5 are Zero) (d) ∆E00 vs. xy. RIT

(e) ∆E00 vs. Y . NNXYZ (∆E00 > 5 are 2) (f) ∆E00 vs. xy. NNXYZ

(g) ∆E00 vs. Y . MVPR (∆E00 > 5 are Zero) (h) ∆E00 vs. xy. MVPR

Fig. 2: ∆E00 visual error analysis of MSI QLED display for four trained models (FMIDXYZ with 8 clusters, RIT model, NNXYZ , and MVPR). First column: ∆E00
versus Y luminance values of desired colors; Second column: ∆E00 versus xy chrominance values of desired colors.
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(a) ∆E00 vs. Y . FMIDXYZ 8 clusters (∆E00 > 5 are 18 in
dark and bluish colors)

(b) ∆E00 vs. xy. FMIDXYZ 8 clusters

(c) ∆E00 vs. Y . RIT (∆E00 > 5 are Zero) (d) ∆E00 vs. xy. RIT

(e) ∆E00 vs. Y . NNXYZ (∆E00 > 5 are 5 in dark bluish
colors)

(f) ∆E00 vs. xy. NNXYZ

(g) ∆E00 vs. Y . MVPR (∆E00 > 5 are 98 in dark reddish
and bluish colors)

(h) ∆E00 vs. xy. MVPR

Fig. 3: ∆E00 visual error analysis of ASUS OLED display for four trained models (FMIDXYZ with 8 clusters, RIT model, NNXYZ , and MVPR). First column: ∆E00
versus Y luminance values of desired colors; Second column: ∆E00 versus xy chrominance values of desired colors.

17



Khleef Almutairi et al. Displays (2024)

Table A.1: MS ERGB performance varying the number of rules between 2 − 15 and the overlapping parameter m between 1.25 − 2.25 for the FIS system trained for
ASUS LCD display.

Clusters
m 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1.25 34.0 12.6 8.3 6.6 6.4 6.2 5.8 6.1 5.7 5.8 4.9 4.9 4.8 5.5
1.5 34.5 14.0 8.9 6.3 6.5 6.2 5.8 5.3 5.7 4.9 5.0 4.7 4.6 5.2
1.75 36.3 16.3 10.1 7.4 6.8 6.1 4.7 5.1 4.8 5.2 5.6 5.2 5.2 5.4
2 39.9 22.5 11.6 8.6 6.9 6.1 5.7 5.0 2.7 2.9 2.9 3.3 3.1 3.4
2.25 45.3 27.1 13.5 12.8 9.5 7.8 6.8 4.7 5.0 5.6 3.7 3.1 3.0 2.8

A. Appendix

This section contains implementation details and comple-
mentary results for the FMID models used to characterize the
displays. We aim to highlight the key factors contributing to
their excellent RGB prediction performance and interpretabil-
ity. The model developed for the ASUS LCD display will be
used as an example, since it exemplifies the general structure
with its 5 clusters/rules. For the other displays, the same princi-
ples that we will use to describe the ASUS display, apply except
for the addition of more rules, for marginal cases.

Our focus will be on the most important parameters which
impact the MS ERGB performance: (1) The type of response
functions used within each rule to predict RGB values. These
functions are the mathematical core that translates the display
model understanding display into the corresponding RGB pre-
dictions. (2) The number of clusters (rules) in the system. This
determines the level of detail the model might be able to obtain.
In this sense, more clusters allow for a finer-grained analysis,
potentially leading to improved accuracy. (3) The overlapping
parameter m between the clusters’ membership functions, of-
ten referred to as the fuzziness factor. This parameter controls
the degree of overlap between clusters, impacting the model’s
ability to handle imprecise data.

First, we analyse performance depending on the type of ac-
tivation function in the so-called consequents. We considered
linear, parabolic and square root functions. In all cases, using
XYZ values as inputs, we found the linear option is the best in
terms of MS ERGB independently of the number of clusters.

Second, we analyze the performance as a function of the
number of rules (clusters) that will be used in the model and
the overlapping degree between the clusters (m value in FMID).
We varied the number of rules in the 2 − 15 range, and the m
parameter, in the 1.25 − 2.25 range. Performance in terms of
MS ERGB is shown in Tables A.1, A.2 and A.3. For the ASUS
LED display, we can see that m = 1.5 is a good choice as it
provides a good performance for many numbers of rules. A
decision about the number of rules is more complex. Optimal
performance is achieved considering higher number of rules but
having so many rules makes the system more difficult to inter-
pret. However, performance does not drop much when slightly
reducing the number of rules, making it easier to interpret. We
consider this to be the best trade-off between performance and
interpretability. Therefore, we conclude that it could also be
worth to build an FIS with only 5 rules.

For the system interpretation we need to provide a linguistic
meaning to the fuzzy inference rules. For that we can have a
look first at Tables A.4, A.5, and A.6. We will explain the ta-

ble A.4 for the ASUS LCD display and the other tables for the
other displays follow the same reasoning. This table shows the
centers of each one of the 5 clusters for each one of the RGB
outputs. We can see that clusters for the red component R, the
input X consistently shows a strong positive influence, while Y
and Z generally have negative impacts. The green component
G is predominantly influenced by the Y input, with Y showing a
positive effect across all rules, while X typically reduces G, and
Z has a minor positive role. For the blue component B, the Z in-
put plays a crucial role, consistently exhibiting a strong positive
influence, Y generally having a negative effect and X a minimal
one. However, the cluster centers are only the peak of the mem-
bership functions in the antecedent of the rules. Therefore, for a
better understanding we must have a look at these functions and
analyze what they are modeling. Figures A.1, A.2, A.2 show
the membership function of each output for each displays.

By analyzing all this information we can identify an overall
behaviour consisting on the 5 rules for each R, G and B chan-
nels, 5 levels for the correspondingly related variables X, Y , and
Z, in each case. This behaviour is expected. In addition, each
output ruleset accounts for the correlation with the less related
variables in different ways. This latter point is more display de-
pendent. In more detail, the implication rules can be interpreted
as follows:

For the red component, we have the following rules:

1. IF X is low AND Y is low, AND Z is medium THEN use
f R
1 .

2. IF X is low AND Y is low, AND Z is medium THEN use
f R
2 .

3. IF X is medium-low AND Y is low, AND Z is low THEN
use f R

3 .
4. IF X is medium AND Y is medium, AND Z is medium-

high THEN use f R
4 .

5. IF X is high AND Y is high, AND Z medium THEN uses
f R
5 .

For the red component, the rules primarily consider com-
binations of the three variables X, Y , and Z at various levels.
Interestingly, the first two rules have identical conditions,
whilst they call for different functions. This might suggest a
need for redundancy or a context-based choice between the
two functions which is not immediately apparent from the
conditions alone. Rules 4 and 5 deal with higher values for X
and Y , and slightly different Z values.

For the green component, the following rules apply:

1. IF X is low AND Y is low AND Z is low THEN use f G
1 .
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Table A.2: MS ERGB performance varying the number of rules between 2 − 15 and the overlapping parameter m between 1.25 − 2.25 for the FIS system trained for
MSI QLED display.

Clusters
m 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1.25 84.5 30.9 16.6 11.5 8.1 6.6 6.4 6.0 5.8 4.0 3.6 3.9 3.6 3.4
1.5 85.9 32.8 18.2 11.6 7.9 6.7 6.4 5.8 5.3 4.3 3.9 3.8 3.5 3.5
1.75 89.3 35.8 19.3 12.7 9.3 7.1 6.9 6.3 6.0 5.6 4.5 4.4 4.1 4.0
2 95.9 40.6 22.3 15.2 11.9 8.6 8.2 7.6 7.4 6.4 6.0 5.5 5.1 4.6
2.25 105.3 47.1 27.0 19.0 14.9 11.4 10.4 9.8 9.5 8.7 7.8 7.5 7.3 6.5
2.5 115.5 54.8 32.8 23.5 18.7 15.0 13.2 12.3 11.8 11.1 10.3 9.7 9.0 9.0

Table A.3: MS ERGB performance varying the number of rules between 2 − 15 and the overlapping parameter m between 1.25 − 2.25 for the FIS system trained for
ASUS OLED display.

Clusters
m 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1.25 72.1 26.8 14.6 10.6 8.4 7.4 7.3 6.5 6.0 4.4 4.2 4.7 4.1 4.0
1.50 73.5 28.4 15.8 10.9 8.3 7.4 7.2 6.7 6.3 5.4 4.9 4.7 4.1 4.2
1.75 76.6 31.2 17.1 12.2 9.4 7.8 7.7 7.3 6.7 6.3 5.4 5.3 4.9 5.0
2.00 82.4 35.4 20.0 14.5 11.7 9.3 9.1 8.6 8.6 7.3 6.8 6.5 6.2 5.9
2.25 90.6 41.1 24.1 17.6 14.2 11.7 11.1 10.8 10.7 9.6 8.3 8.2 8.4 8.2
2.50 99.7 47.9 29.1 21.4 17.2 14.7 13.6 12.9 12.6 11.9 10.5 10.1 9.8 10.4

2. IF X is low AND Y is low AND Z low THEN use f G
2 .

3. IF X medium-low Y is medium-low AND Z medium-low
THEN use f G

3 .
4. IF X is medium-high AND Y is high AND Z is medium

THEN use f G
4 .

5. IF X is high AND Y is high AND Z is high THEN use f G
5 .

The green component rules also demonstrate a progression
in the X, Y , and Z levels. Similarly to the red component
rules, the first two rules share the same conditions, but suggest
different functions. Rule 3 moves to medium-low levels for all
variables, indicating a balanced intermediate state. The higher
complexity comes in Rule 4 and Rule 5, where medium-high
and high values for X, Y , and Z call for more specific functions,
reflecting how higher values necessitate different handling in
the green component.

For the blue component, the following rules apply:

1. IF X is medium-low AND Y is medium-low AND Z is
low, THEN use f B

1 .
2. IF X is medium-low AND Y is low AND Z is medium-

low, THEN use f B
2 .

3. IF X is medium-low AND Y is medium-low AND Z is
low, THEN use f B

3 .
4. IF X is medium AND Y is medium-high AND Z is low,

THEN use f B
4 .

5. IF X is high AND Y is high AND Z is high, THEN use
f B
5 .

The blue component rules show a unique pattern where cer-
tain conditions are repeated across multiple rules but suggest
different functions. For instance, Rules 1 and 3 both have the
same conditions but use different consequent functions. This
repetition suggests that despite identical conditions, different
contextual applications. Rules 4 and 5 indicate a higher values
of X, Y , and Z, showing more complex conditions which likely

correspond to more specific and complex behaviors in the blue
component’s response.

We can then extract more information about the model by an-
alyzing the f K

i functions, where, K = R,G, B, and i = 1, . . . , 5,
used as a consequence of the rules. For each output, the most
influential input variable is X for R, Y for G, and Z for B. These
functions reveal a proportional relationship between the pri-
mary input and the output. The variability in the coefficients
among the different rules captures the nonlinear relationships
within the system, effectively modeling these relationships as
piece-wise linear functions. For instance, in the red component
R, functions such as f R

1 = 21.73X−10.99Y −3.53Z−2.80 show
that X has a substantial positive impact on R, while Y and Z
reduce R. This pattern suggests that the red output is primarily
dependent on the X input, with Y and Z serving as secondary
modifiers. Similarly, in the green component G, functions like
f G
1 = −7.46X + 14.88Y + 0.61Z + 0.96 highlight that Y has a

strong positive effect on G, while X generally reduces G. The
influence of Z is minimal, indicating that the green output is
largely governed by the Y input, with X and Z playing smaller
roles.

For the blue component B, the functions f B
i indicate that Z is

the primary factor, with functions such as f B
1 = 0.10X−0.78Y+

6.74Z+2.60. Z consistently shows a strong positive effect on B,
while Y tends to have a negative impact, and X has a negligible
effect. This suggests that the blue output is predominantly influ-
enced by the Z input, with minor contributions from X and Y .
Additionally, the model reveals some inverse relationships to
compensate for the correlations and overlaps among the RGB
primaries in the XYZ color space. These inverse relationships
adjust for the inherent overlap in the color space, ensuring bal-
anced and accurate color output. For instance, since increasing
G also increases Z, and higher Y values lead to higher G values,
the model compensates this by establishing an inverse relation-
ship between B and Y . This mechanism ensures accurate color
representation despite the complex inter-dependencies between
the inputs and outputs.
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Table A.4: Cluster centres of the trained model FMIDXYZ of ASUS LCD display and fitted output regression TS functions for each rule and RGB output.

Rules for R Cluster (X,Y,Z) centroid Output function
1 (25.93, 33.34, 46.96) R = f R

1 (X,Y,Z) = 21.73X − 10.99Y − 3.53Z − 2.80
2 (36.07, 19.15, 58.46) R = f R

2 (X,Y,Z) = 6.32X − 3.31Y − 1.03Z + 64.88
3 (37.61, 38.14, 11.92) R = f R

3 (X,Y,Z) = 6.21X − 3.17Y − 1.04Z + 65.97
4 (52.70, 46.31, 74.34) R = f R

4 (X,Y,Z) = 6.05X − 3.09Y − 0.99Z + 70.21
5 (67.98, 82.81, 58.91) R = f R

5 (X,Y,Z) = 6.22X − 3.11Y − 1.03Z + 62.70
Rules for G Cluster (X,Y,Z) centroid Output function

1 (24.92, 12.17, 43.81) G = f G
1 (X,Y,Z) = −7.46X + 14.88Y + 0.61Z + 0.96

2 (29.91, 21.69, 44.87) G = f G
2 (X,Y,Z) = −3.25X + 6.41Y + 0.26Z + 28.96

3 (37.98, 37.51, 46.04) G = f G
3 (X,Y,Z) = −2.15X + 4.23Y + 0.17Z + 52.31

4 (52.09, 64.58, 48.89) G = f G
4 (X,Y,Z) = −1.91X + 3.83Y + 0.16Z + 50.73

5 (57.54, 73.89, 51.27) G = f G
5 (X,Y,Z) = −1.51X + 3.04Y + 0.13Z + 63.76

Rules for B Cluster (X,Y,Z) centroid Output function
1 (31.92, 37.72, 7.61) B = f B

1 (X,Y,Z) = 0.10X − 0.78Y + 6.74Z + 2.60
2 (34.74, 19.47, 81.80) B = f B

2 (X,Y,Z) = 0.05X − 0.23Y + 1.49Z + 80.81
3 (35.74, 39.31, 24.96) B = f B

3 (X,Y,Z) = −0.02X − 0.32Y + 2.92Z + 33.93
4 (46.09, 46.80, 67.65) B = f B

4 (X,Y,Z) = 0.01X − 0.17Y + 1.84Z + 61.48
5 (60.20, 64.52, 97.12) B = f B

5 (X,Y,Z) = −0.02X − 0.08Y + 1.61Z + 61.47

(a) (b) (c)

Fig. A.1: Membership functions (µ) for FMIDXYZ , for the ASUS LCD display using different clustering results for each output: (a) The first output (R), (b) The
second output (G), (c) The third output (B).

(a) (b) (c)

Fig. A.2: Membership functions (µ) for FMIDXYZ , for MSI QLED display using different clustering results for each output: (a) The first output (R), (b) The second
output (G), (c) The third output (B).
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Table A.5: Cluster centres of the trained model FMIDXYZ for MSI QLED display and fitted output regression TS functions for each rule and RGB output.

Rules for R Cluster (X,Y,Z) centroid Output function
1 (17.08, 27.58, 41.47) R = f R

1 (X,Y,Z) = 32.32X − 10.85Y − 5.74Z − 9.15
2 (18.45, 28.21, 41.52) R = f R

2 (X,Y,Z) = 15.45X − 5.19Y − 2.75Z + 5.40
3 (21.40, 29.56, 41.59) R = f R

3 (X,Y,Z) = 10.12X − 3.41Y − 1.80Z + 19.01
4 (26.53, 31.90, 41.70) R = f R

4 (X,Y,Z) = 7.06X − 2.38Y − 1.26Z + 37.10
5 (33.62, 35.13, 41.86) R = f R

5 (X,Y,Z) = 5.22X − 1.76Y − 0.93Z + 57.42
6 (42.95, 39.40, 42.12) R = f R

6 (X,Y,Z) = 4.06X − 1.37Y − 0.72Z + 78.15
7 (58.53, 46.45, 42.42) R = f R

7 (X,Y,Z) = 3.44X − 1.15Y − 0.61Z + 94.21
8 (68.78, 51.20, 42.89) R = f R

8 (X,Y,Z) = −0.00045X + 0.00015Y + 0.00008Z + 252.00
Rules for G Cluster (X,Y,Z) centroid Output function

1 (28.13, 12.05, 40.39) G = f G
1 (X,Y,Z) = −9.34X + 20.51Y + 0.84Z − 6.10

2 (29.02, 14.58, 40.58) G = f G
2 (X,Y,Z) = −4.76X + 10.43Y + 0.42Z + 10.97

3 (30.16, 17.87, 40.79) G = f G
3 (X,Y,Z) = −3.39X + 7.41Y + 0.30Z + 23.63

4 (32.11, 23.47, 41.14) G = f G
4 (X,Y,Z) = −2.58X + 5.63Y + 0.23Z + 37.43

5 (35.19, 32.35, 41.70) G = f G
5 (X,Y,Z) = −1.92X + 4.19Y + 0.17Z + 57.21

6 (38.49, 41.85, 42.29) G = f G
6 (X,Y,Z) = −1.54X + 3.35Y + 0.13Z + 75.33

7 (42.53, 53.48, 43.02) G = f G
7 (X,Y,Z) = −1.30X + 2.85Y + 0.11Z + 90.33

8 (49.18, 72.61, 44.22) G = f G
8 (X,Y,Z) = −1.13X + 2.48Y + 0.10Z + 104.81

Rules for B Cluster (X,Y,Z) centroid Output function
1 (20.97, 30.01, 27.73) B = f B

1 (X,Y,Z) = 0.02X − 0.2Y + 2.61Z + 46.38
2 (29.06, 34.60, 30.39) B = f B

2 (X,Y,Z) = 0.10X − 0.87Y + 13.80Z − 8.89
3 (29.79, 34.79, 67.02) B = f B

3 (X,Y,Z) = 0.04X − 0.39Y + 6.04Z + 7.79
4 (31.30, 35.18, 14.48) B = f B

4 (X,Y,Z) = 0.02X − 0.25Y + 3.74Z + 25.62
5 (37.60, 36.74, 46.93) B = f B

5 (X,Y,Z) = 0.007X − 0.13Y + 1.94Z + 69.43
6 (41.75, 37.78, 68.30) B = f B

6 (X,Y,Z) = 0.004X − 0.10Y + 1.51Z + 92.16
7 (47.67, 39.25, 98.84) B = f B

7 (X,Y,Z) = 0.007X − 0.10Y − 1.29Z + 109.76
8 (50.71, 43.28, 28.54) B = f B

8 (X,Y,Z) = −0.002X + 0.17Y + 2.62Z + 47.17

Table A.6: Cluster centres of the trained model FMIDXYZ of the ASUS OLED display and fitted output regression TS functions for each rule and RGB output.

Rules for R Cluster (X,Y,Z) centroid Output function
1 (16.50, 26.59, 38.53) R = f R

1 (X,Y,Z) = 53.98X − 20.99Y − 8.26Z − 2.189
2 (18.14, 28.06, 37.75) R = f R

2 (X,Y,Z) = 16.88X − 6.54Y − 2.56Z + 23.24
3 (21.30, 29.83, 33.95) R = f R

3 (X,Y,Z) = 9.33X − 3.62Y − 1.39Z + 42.65
4 (25.20, 23.14, 41.28) R = f R

4 (X,Y,Z) = 5.90X − 2.35Y − 0.85Z + 65.58
5 (40.00, 30.92, 26.99) R = f R

5 (X,Y,Z) = 3.99X − 1.65Y − 0.62Z + 95.62
6 (49.64, 65.11, 13.43) R = f R

6 (X,Y,Z) = 4.02X − 1.35Y − 0.86Z + 83.49
7 (53.91, 46.93, 87.50) R = f R

7 (X,Y,Z) = 3.80X − 1.54Y − 0.54Z + 96.90
8 (56.48, 35.06, 36.67) R = f R

8 (X,Y,Z) = 3.25X − 1.48Y − 0.46Z + 119.14
Rules for G Cluster (X,Y,Z) centroid Output function

1 (23.98, 11.48, 36.78) G = f G
1 (X,Y,Z) = −11.47X + 24.45Y + 0.26Z + 14.70

2 (24.04, 11.01, 36.74) G = f G
2 (X,Y,Z) = −44.97X + 95.77Y + 0.99Z − 3.41

3 (26.92, 18.63, 39.28) G = f G
3 (X,Y,Z) = −2.972X + 6.475Y + 0.10Z + 46.69

4 (27.20, 14.79, 40.05) G = f G
4 (X,Y,Z) = −5.323X + 11.411Y + 0.14Z + 28.66

5 (29.34, 27.08, 26.67) G = f G
5 (X,Y,Z) = −1.898X + 4.289Y + 0.05Z + 65.92

6 (34.56, 47.92, 27.80) G = f G
6 (X,Y,Z) = −1.313X + 2.959Y + 0.03Z + 93.03

7 (42.83, 68.79, 42.47) G = f G
7 (X,Y,Z) = −1.060X + 2.263Y + 0.03Z + 121.68

8 (51.27, 48.25, 58.12) G = f G
8 (X,Y,Z) = −1.488X + 3.260Y + 0.06Z + 87.74

Rules for B Cluster (X,Y,Z) centroid Output function
1 (26.26, 29.59, 10.13) B = f B

1 (X,Y,Z) = 0.26X − 0.37Y + 4.14Z + 37.59
2 (26.48, 31.26, 2.39) B = f B

2 (X,Y,Z) = 1.93X − 4.34Y + 39.29Z + 2.49
3 (29.20, 34.39, 5.07) B = f B

3 (X,Y,Z) = 0.40X − 0.84Y + 8.02Z + 22.43
4 (32.46, 35.07, 19.47) B = f B

4 (X,Y,Z) = 0.18X − 0.22Y + 2.83Z + 54.05
5 (33.13, 31.96, 33.51) B = f B

5 (X,Y,Z) = 0.16X − 0.11Y + 1.99Z + 71.82
6 (36.50, 34.53, 53.56) B = f B

6 (X,Y,Z) = 0.10X − 0.06Y + 1.60Z + 88.61
7 (38.25, 35.05, 75.34) B = f B

7 (X,Y,Z) = 0.06X − 0.07Y + 1.42Z + 101.18
8 (40.84, 36.33, 101.10) B = f B

8 (X,Y,Z) = 0.00X − 0.82Y + 1.16Z + 126.20
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(a) (b) (c)

Fig. A.3: Membership functions (µ) for FMIDXYZ model trained for ASUS OLED display, using different clustering results for each output: (a) The first output
(R), (b) The second output (G), (c) The third output (B).
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