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Abstract
Colour image smoothing is a challenging task because it is necessary to appropriately distinguish between noise and original
structures, and to smooth noise conveniently. In addition, this processing must take into account the correlation among
the image colour channels. In this paper, we introduce a novel colour image denoising method where each image pixel is
processed according to an eigenvector analysis of a data matrix built from the pixel neighbourhood colour values. The aim of
this eigenvector analysis is threefold: (i) to manage the local correlation among the colour image channels, (ii) to distinguish
between flat and edge/textured regions and (iii) to determine the amount of needed smoothing. Comparisons with classical
and recent methods show that the proposed approach is competitive and able to provide significative improvements.

Keywords Colour image filter · Colour image smoothing · Eigenvectors · Gaussian noise · Principal components · Vector
filter

1 Introduction

Image denoising is a topicwhich has been extensively studied
in the fields of computer vision and digital image processing.
The denoising (or filtering) step is essential for almost every
computer vision systembecause noise can significantly affect
the visual quality of the images as well as the performance
of most image processing tasks. Also, in the last years the
use of colour images has gained much attention within the
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computer vision field, and therefore, colour image denoising
has become an important research topic.

Among the different sources of noise in digital imaging,
probably themost commonone is the so-called thermal noise,
which is due to the charge-coupled device (CCD) sensormal-
function. This kind of noise is modelled as additive white
Gaussian noise. Therefore, the presence of thermal (or Gaus-
sian) noise can be simulated by adding random values from
a zero-mean Gaussian distribution to the original values of
each image channel independently, where the standard devi-
ation, s, of the Gaussian distribution characterizes the noise
intensity [1]. Many methods for reducing image Gaussian
noise from colour images have been proposed in the litera-
ture, all of them sharing the following goals [1–4]:

1. Flat regions should be as smooth as possible, so that the
noise is completely removed.

2. Edges and details should be preserved as much as possi-
ble, avoiding blurring and sharpening.

3. Texture should not be lost, which means that texture
should not be confused with noise.

4. No colour artifacts should be introduced in the denoising
process. That is, no new colours different from the orig-
inal ones in the image should appear after the denoising
process.
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The earliest approaches for Gaussian noise smoothing
were based on a linear approach. These methods, such as
the arithmetic mean filter (AMF) [1], are able to suppress
noise, because they take advantage of its zero-mean prop-
erty, but they blur edges and texture significantly. This fact
motivated the development of many nonlinear methods that
try to overcome this drawback by detecting image edges and
details and smoothing them less than the rest of the image.

Within the nonlinear methods, a wide class of them uses
averaging to take advantage of the zero-mean property of
the noise. This class includes the well-known bilateral filter
(BF) [5] and its variants [6–10]. Also, the works in [11,12]
use an averaging operation which is restricted to the (fuzzy)
peer groupmembers for each image pixel. Othermethods are
developed using fuzzy logic or soft switching methods, such
as those in [13–22]. Several methods based on different opti-
mizations of weighted averaging are proposed in [23–26].
Another important family of filters are the partition-based
filters [26–28] that classify each pixel to be processed into
several signal activity categories which, in turn, are asso-
ciated with appropriate processing methods. Other filters
follow a regularization approach [29–38] based on the mini-
mization of appropriate energy functions by means of partial
differential equations (PDEs). Wavelet theory has also been
used to design image filtering methods [39–48]. The combi-
nation of collaborative and wavelet filtering is proposed in
[49,50], and a method using the wavelet transformation and
data regularization is proposed in [51]. Other recent methods
make use of a combination of image analysis techniques for
image segmentation followed by an appropriate smoothing
of each image region [52–54]. In addition, other methods
based on principal component analysis (PCA) in the image
spatial domain [55–58] have been studied.

On the other hand, it should be pointed out that in the
context of colour images, goal 4 in the above list is specially
important. It is well known that colour artifacts may be intro-
duced if the correlation among the image channels is not
taken into account [1–3]. This implies that the component-
wise application of grey-scale methods is not appropriate for
colour image processing. A well-established solution is the
vector approach, which processes images by treating them
as vector fields [1–3,5,9–13]. However, it is also known that
the denoising capability of vector methods may be inferior
to that of the component-wise approaches, for instance, in
the case of the vector median filter (VMF) [59] versus the
component-wise median or the robust vector median meth-
ods [60,61]. This means that the development of alternative
methods is also interesting. For instance, the work in [14]
proposes a different method to manage inter-channel corre-
lation which is based on analysing the observed differences
between colour component couples, and the method in [32]
models the correlation by means of colour-ratio constraints.

In this paper, we introduce a new local technique using
weighted pixel averaging to approach the colour image
denoising problem based on a well-known linear algebra
tool: eigenvectors. Local eigenvector analysis allows to pro-
cess the correlation among the colour channels as well as to
determine a set of smoothing weighting coefficients to per-
form the denoising operation. Each image pixel is processed
using a data matrix built from its local neighbourhood colour
component values. Eigenvector analysis performed on the
data matrix provides the necessary information to transform
the original data matrix into a new one composed by a new
set of uncorrelated variables that can be now processed in
a component-wise fashion. Also, eigenvector analysis pro-
vides information on the data variance of the new set of
variables that we can use to appropriately smooth each one
of the new variables, preserving original data and reducing
noise. It should be pointed out that the proposed method is
completely different from previous PCA methods, as those
in [55–58], because our analysis is performed in the signal
value domain instead of the image spatial domain.

The rest of the paper is organized as follows: Section
2 gives the details about the proposed method; Sect. 3
presents the experimental results and a systematic compari-
son against other state-of-the-art methods, which shows that
the proposed technique significantly outperforms other local
methods of the same family and it is able to compete with
non-local methods; finally, conclusions are drawn in Sect. 4.

2 Colour image denoising based on
eigenvector analysis

2.1 Local data matrix and eigenvector analysis

The colour image F, which is represented in the RGB colour
space, is processed using a sliding filtering window of size
N × N where N = 2n + 1 and n = 1, 2, . . .. The sliding
window is centred on each pixel to be processed, denoted by
F0, which is defined by the term (FR

0 , FG
0 , FB

0 ) of its three
RGB colour components. The rest of the neighbour pixels in
the filtering window are denoted as Fi , i = 1, . . . , N 2 − 1.

Using the colour component values of the pixels in the fil-
tering window, we build a data matrix D of size N 2 × 3
where the columns of the matrix are associated with the
colour components which are considered as the variables of
the data, whereas the rows are associated with the pixels that
represent the samples in the data set. The main novelty of
the method introduced in this paper is that an analysis of
the D matrix is used to: (i) appropriately process the cor-
relation among the image channels and (ii) to conveniently
smooth the noise in the image while preserving the original
structures. We propose to perform an eigenvector analysis
based on the information provided by the matrix D. For this,
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we find the eigenvectors, also called characteristic vectors
or principal components, of DTD, where T denotes matrix
transpose. This procedure is behind well-known methods
such as singular value decomposition (SVD), independent
component analysis (ICA) or principal component analysis
(PCA) [62,63].

The method of principal components is based on a key
result from matrix linear algebra: since DTD is a symmetric
matrix, it may be reduced to a diagonal matrix L by premul-
tiplying and postmultiplying it by a particular orthonormal
matrix O such that the diagonal elements of L are called
the characteristic roots, latent roots or eigenvalues, and the
columns ofO are called the characteristic vectors, eigenvec-
tors or latent vectors of DTD [62,63]. That is, a vector v is
an eigenvector of DTD if and only if it satisfies that

DTDv = λv, (1)

where λ is a scalar called the eigenvalue corresponding to v
and, for convenience, v is taken so that it is unitary. Eigen-
values λi of DTD can be obtained as the solutions of the
equation

det(DTD − λI ) = 0, (2)

where det denotes the matrix determinant. Then, given the
non-null eigenvalues λi , we can obtain [62,63] three associ-
ated eigenvectors vi from the eigenvalue equations

(DTD − λi I )vi = 0, (3)

that can be considered as an alternative set of orthogonal
coordinate axes. Transforming the original data by means
of the coordinate axis provided by the eigenvectors implies
transforming the original correlated variables into a new set
of variables which are uncorrelated. Geometrically, this pro-
cedure is simply a principal axis rotation of the original
coordinate axis about their means [62,63]. Therefore, if we
denote byV the 3×3 orthonormal matrix that has as columns
the three eigenvectors of DTD denoted as V1, V2, and V3,
the mentioned transformation is performed by multiplyingD
by V so that

U = DV, (4)

whereU denotes the matrix containing the transformed data,
also called scoresmatrix, and each pixelUi , i = 0, . . . , N 2−
1 is now represented by the term Ui = (U 1

i ,U 2
i ,U 3

i ). More-
over, note that, since V is orthonormal, it is fulfilled that

UVT = D. (5)

Now, we can directly operate on the values ofU to reduce
the noise. Notice that now the columns of U are associated

with a new set of uncorrelated variables that wewill denote as
U 1,U 2, andU 3, and which are associated with the eigenvec-
tors V1, V2, and V3, respectively. This implies that we can
safely apply component-wise methods to reduce the noise
independently in each of the new variables. In particular, we
propose to apply the method described in Sect. 2.2 which,
as it will be explained in the following, is devised to take
advantage of the information provided by this eigenvector
analysis. Finally, denoised data need to be transformed again
into the RGB space. According to Eq. (5), this can be done
by simply multiplying the data in the transformed space by
the matrix VT .

It should be stressed that, even though from a strictly the-
oretical point of view obtaining 3-component eigenvectors
from small datasets does not guarantee useful results for the
low ratio of data samples per variable, in our case, we see
that the results for small filtering windows (3 × 3, which
means 9 data) are satisfactory and useful. This is probably
due to the strong correlation among the colour channels and
the high spatial redundancy (spatial correlation) shown in
digital images. Data could be increased by using a larger fil-
tering window, but it is known that large windows lead to
undesired blurring in the image and, consequently, we pre-
fer to use small ones. Note that a number of works already
exist where eigenvectors are computed satisfactorily even
with a much lower ratio of data samples per variable. For
instance, this happens in PCA-based modelling of industrial
batch processes [64,65], where thousands of variables are
analysed using less than a hundred samples. So, this practice
is quite common, indeed.

2.2 Denoisingmethod

To devise an appropriate denoising method using the infor-
mation from the previous eigenvector analysis, we take
advantage of the following properties of the eigenvectors:
(i) eigenvectors are obtained as orthogonal linear combina-
tions of the original variables; (ii) these linear combinations
are obtained so that the sample variance of the original data is
maximized [62,63]. This means that one of the eigenvectors,
also called the first principal component, is obtained so that
its direction corresponds to the direction ofmaximum sample
variance in the original variable space; then, another eigen-
vector, called the second principal component, is obtained as
the vector whose direction is orthogonal to the previous one
and that maximizes the remaining variance, and so forth.

In colour images, edges, texture and image details can be
seen as correlated variations of the RGB values. On the other
hand, since Gaussian noise in the image channels is com-
monly assumed to be independent, variations due to noise are
uncorrelated. Then, because of the explanation above, cor-
related variations due to edges or image details can only be
associated with one of the eigenvectors Vi since, otherwise,
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the new variables would not be uncorrelated. An example of
this is given in Figure 1 (see supplementary material) where
we show an edge in a colour image along with the original
colour component values and the result after applying the
eigenvector transformation on the data. (For a better visual-
ization, only the R and G values are used.) On the other hand,
Figure 2 (see supplementary material) corresponds to a flat
region of a colour image where it can be seen that this effect
is not observed.

Also, because of the sample variance maximization fea-
ture, we can identify the new variable Ui associated with
the eigenvector that explains the correlated data variation
due to an edge or image detail as the variable Ui that ful-
fils that σ(Ui ) >> σ(U j ) and σ(Ui ) >> σ(Uk), where
σ denotes the sample standard deviation. In such a case,
since data represented by Ui is associated with image edge
or detail information and it is also noisy, this variable should
not be excessively smoothed, whereas U j and Uk can be
safely smoothed since they do not bear image information
but mainly noise. On the other hand, in flat image regions
where only uncorrelated variations due to noise in the data
are observed, it is expected that the variances of Ui , U j and
Uk are similar, that is, σ(Ui ) ≈ σ(Uk) ≈ σ(U j ) , which
means that the three variables can be safely smoothed. This
fact is shown in Figure 3 (see supplementary material) where
we give two grey-scale images corresponding to two noisy
images where the grey level of each pixel is proportional to
the maximum of σ(Ui ), σ(U j ), and σ(Uk). We can easily
see that brightest image areas correspond to image edges and
details. According to this, we devise the denoising method
to smooth these brighter areas less than the darker ones.

As mentioned in Introduction, we aim at applying a
weighted averaging operation in order to smooth each com-
ponent independently. Then, to smooth each component of
the pixel represented by the term U0 = (U 1

0 ,U 2
0 ,U 3

0 ), the
operation given by the following expression is applied:

Û i
0 =

∑N2−1
p=0 Wi

pU
i
p

∑N2−1
p=0 Wi

p

, i = 1, 2, 3. (6)

where i refers to the colour channel and p to the pixel number
in the neighbourhood window around a pixel.

According to above, the weights Wi
p should be computed

so that the componentUi
0 is less smoothed when σ(Ui ) >>

σ(U j ) and σ(Ui ) >> σ(Uk), and more smoothed other-
wise. For this, we define the normalized standard deviation
σn of a variable Ui as

σn(U
i ) = σ(Ui )

∑3
j=1 σ(U j )

. (7)

To appropriately perform the averaging, the weights Wi
p

should be computed using a decreasing function on |Ui
p−Ui

0|
so that only Ui

p values close to U
i
0 receive high weights. For

this, we use the following exponential-based expression, but
any other decreasing function could be used instead, as well:

Wi
p = exp

(

−|Ui
p −Ui

0|σn(Ui )

D

)

, (8)

where D > 0 is a filter parameter that tunes the global
smoothing capability of the method. It can be seen that larger
values of D imply that values of Wi

p will be closer to 1, and
therefore, the smoothing capability is higher. Conversely, for
lower values of D, the smoothing capability decreases. The
appropriate setting of D will be experimentally studied in
Sect. 3.1. Note that the value given by σn(Ui ) is also related
to the smoothing capability: for lower values of σn(Ui ) the
smoothing capability increases, whereas for higher values of
σn(Ui ) the smoothing performed is lower. Consequently, the
desired behaviour is achieved.

Finally, the processing scheme proposed in Sects. 2.1 and
2.2 is summarized in Algorithm 1.

Algorithm 1: Colour image denoising method based on
eigenvector analysis

1 foreach Image pixel F0 do
2 Extract the N × N neighbourhood around F0 and build the

N 2 × 3 matrix D
3 Obtain the eigenvalues λi as the solutions of Eq. (2)
4 Compute the eigenvectors vi using the eigenvalues λi and Eq.

(3)
5 Obtain the N 2 × 3 matrix U by applying the eigenvector

transformation on the data matrix D according to Eq. (4)
6 Compute σn(Ui ), i = 1, 2, 3 and the weights Wi

p as
explained in Eq. (7) and Eq. (8), respectively.

7 Compute Û0 = (Û1
0 , Û2

0 , Û3
0 ) according to Eq. (6)

8 Obtain the smoothed RGB pixel F̂0 from Û0 by inverting the
eigenvector transformation according to Eq. (5) as
F̂0 = Û0VT

9 end

3 Experimental results and comparisons

In the experimental section, we have used the test images
Pills, Parrots, Lenna, Beach,Headphones, Flower, andGrass.
We have extracted patches (Fig. 4, see supplementary mate-
rial), of the original images with different (small) sizes and
texture and detail content to test themethods against different
varieties of spatial frequencies and also to better appreci-
ate the performance differences among different parameter
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settings and filtering methods. These images have been cor-
rupted with noise using the classical white additive Gaussian
model [1]. Each colour image channel has been contami-
nated independently with a varying standard deviation, s, of
the Gaussian distribution, which represents the noise inten-
sity.

To assess the performance of a filtering process, we use
five different measures each of them accounting for a dif-
ferent point of view of assessment: the mean absolute error
(MAE) [1] to measure the detail-preserving ability; the peak
signal-to-noise ratio (PSNR) [1] for the noise suppression
ability; the normalized colour difference (NCD) [1] for the
colorimetric preservation ability; the generalization to colour
of the popular structural similaritymeasure [66] namedFuzzy
colour structural similarity (FCSS) [67]; and the perceptual
difference inspired in the image colour appearance model
iCAM (iCAMd) [68], which we have used setting for all
images 5 degrees of visual angle as visualization conditions.

3.1 Parameter setting

In order to choose the appropriate adjustment of the filter
parameter D in Eq. (8), we have experimentally analysed the
filter performance in terms of PSNR as a function of D using
the images Pills and Lenna (Fig. 4 (a),(c), see supplemen-
tary material). They have been contaminated with varying
standard deviation s of Gaussian noise. For each value of
s ∈ [1, 30], we have experimentally determined the optimal
setting for D in terms of the PSNR quality measure. The
obtained results, which are shown in Fig. 5 (see supplemen-
tary material), suggest that for values of the noise standard
deviation s in [1, 30], an appropriate value of D can be set
proportionally to s in the [1, 25] interval. So, roughly, D can
be set according to the linear relation

D = 5

6
s,

where the standard deviation of the corruptingGaussian noise
s can be estimated using the method in [69]. Also, in Fig. 6
(see supplementary material), we represent the performance
in terms of PSNR as a function of D for four noisy images.
It can be seen that it is not necessary to optimally set D in
order to achieve a superior performance and, therefore, the
proposed automatic setting for D is sufficient.

3.2 Comparison with state-of-the-art methods

The performance of the proposed filter is compared against
the following filters:Bilateral Filter (BF) [5],Adaptive Near-
est Neighbour Filter (ANNF) [13], Chromatic filter [23]
(CHRF), Fuzzy Vector Median Filter (FVMF) [15], Peer
Group Averaging (PGA) [11], Fuzzy Directional Deriva-

tive Filter [18] (FDDF), Fuzzy Noise Reduction Filter [14]
(FNRF), Fuzzy Wavelet Denoising method (FWD) [42],
Collaborative Wavelet Filter (CWF) [49,50], and Colour
Regularization Filter (CRF) [32]. All filters have been
applied on a 3 × 3 filter window in an iterative fashion with
the same stop condition: the method stops when it reaches
the maximum performance in terms of PSNR, ignoring the
iteration for which PSNR decreases for the first time. For
each method, the parameter setting advised by the respec-
tive authors has been employed, tuning experimentally when
necessary.

Experimental results are presented in Tables 1–7 (see
supplementary material). In each table, the best result for
each noise level and performance measure is written in red,
and the second best, in blue. These tables show that the
proposed method exhibits one of the best overall perfor-
mance for all quality measures, implying that the proposed
method achieves a good noise reduction without introducing
colour artifacts, as well as it properly preserves image details,
colours and image structures. From these results, it is easy to
identify a group of filters, most of them based on averaging
pixel values for smoothing, with performance significantly
lower than the rest: BF, ANNF, CHRF, FVMF, PGA, and
FDDF filters. On the other hand, the fuzzy filters FWD and
FNRF, and theCRF showabetter performance than the group
before. More specifically, FNRF and CRF are able to yield
a competitive performance in some cases: FNRF performs
very well for images with a higher spatial frequency con-
tent when they are contaminated with medium-to-high noise
intensities; CRF also performs competitively when the noise
intensity is high, specially in terms of structural similarity.
However, the best performance is achieved by the non-local
method CWF and the proposed method, as they rank first or
second in more than 70% of the cases. Furthermore, we can
see that the proposed method is, in overall, better than CWF
for images with a higher spatial frequency content (more
texture and small details), whereas CWF is better for the
larger images that have a lower spatial frequency content,
that is, more and larger areas of homogeneous regions. This
is logical as the block matching procedure applied in CWF
finds more matches in this type of images, which allows to
achieve a higher denoising performance. On the other hand,
this indicates that our method lacks noise reduction capabil-
ity in homogeneous regions, which is a point to improve in
the future. Finally, it should be stressed that the performance
of the proposed method is significantly better than other fil-
ters in the local averaging family, and it is able to compete
with non-local methods.

Also, some images denoised using the most competitive
filters are shown in Figures 7–13 (see supplementary mate-
rial). By visually inspecting these results, we can see that
the images generated by the proposed method are visually
pleasing, specially for images with a high spatial frequency
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content and from the detail and structure preservation point
of view. The following points may be stressed:

– Figure 7: All FWD, CWF, CRF and the proposed method
perform quite well in this case. It seems that the pro-
posed method preserves better the texture in the image
(see right-up area), whereas FWD and CWD reduce bet-
ter the noise but blur the texture a little.

– Figure 8: In these images, we can see that the FWD
and CWF methods are generating a little blurry output
images. Also, FWD has introduced some colour artifacts
(next to the eye). CRF has reduced noise well, but it has
also introduced a little bit of blur around the eye and
in some edges, and the proposed method has better pre-
served edges and texture (specially around the eye) while
appropriately reducing the noise.

– Figure 9:Here, according to the quantitative results, CWF
performs the best: It removes the noise and keeps all
texture and details in the image. CRF and the proposed
method are able to remove the noise but blur texture a bit.
FNRF does not blur the texture but it does not remove all
the background noise.

– Figure 10: In these images, we can see clear performance
differences among the FNRF, FWD, CRF and the pro-
posed method. The FNRF does not reduce all noises in
the image and some of the image edges are sharpened, so,
they are not perfectly preserved. FWD blurs the image
too much and, in addition, it introduces some colour arti-
facts. CRF is able to reduce well the noise, but it blurs the
edges in the image. Finally, we can see that the proposed
method generates a more visually pleasing image where
the noise is reduced and the edges are preserved without
sharpening them.

– Figure 11: In this example, we can see that CRF has
sometimes problems to preserve colour information in
the image, probably because of a deficient processing of
image inter-channel correlation. Also, we see that FNRF
and CWF blur the imagemore than the proposedmethod,
which is the one achieving here the best trade-off between
noise reduction and details preservation.

– Figure 12: In this case, the noise reduction capability of
CWF stands out: CWF reduces all noise and keeps the
main details but blurs a bit smaller detail. On the other
hand, the noise reduction capability of FNRF is below the
rest. CRF and the proposedmethod performquite similar,
which agrees with the results in terms of FCSS: they are
best in keeping the global image structure. While they
do not remove the noise as well as CWF, they preserve
better hair textures.

– Figure 13: In this example, it can be seen that both FNRF
and CRF are not able to properly reduce all noises. FWD
reduces the noise, but the output image is too blurry and
it also contains too many colour artifacts. The proposed

method seems also here to produce the best results since
it is able to reduce the noise, but in this case some edges
and texture have been a little blurred.

4 Conclusions

In this paper, we have introduced a local method to reduce
Gaussian noise from colour images which is based on an
eigenvector analysis of the colour samples in each pixel
neighbourhood. The proposed method employs a local pro-
cedure both to appropriately process the correlation among
the colour image channels, and to compute a set of weight-
ing coefficients which are used to smooth each pixel in the
image. It performs well in colour image denoising since it
is able to reduce image noise while preserving image edges,
texture and other details without introducing colour artifacts.
Experimental results have shown that the proposed method
is able to exhibit a high performance which is competitive
with respect to recent state-of-the-art methods both from the
quantitative and from the visual point of view. The proposed
method clearly outperforms other local methods, and it is
competitive with non-local ones.
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